Thamed-Chowdhury commited on
Commit
d80071b
·
2 Parent(s): 6141cdb d8ee3c2

Merge branch 'main' of https://huggingface.co/spaces/Thamed-Chowdhury/BAMS

Browse files
Files changed (1) hide show
  1. app.py +91 -62
app.py CHANGED
@@ -28,6 +28,14 @@ if st.button("Generate Dataset"):
28
  # Convert 'Publish Date' column to datetime with 'day-month-year' format
29
  df3['Publish Date'] = pd.to_datetime(df3['Publish Date'], format='%d-%m-%Y')
30
 
 
 
 
 
 
 
 
 
31
  # Convert user input dates to datetime
32
  start_date = pd.to_datetime(start_string, format='%d-%m-%Y')
33
  end_date = pd.to_datetime(end_string, format='%d-%m-%Y')
@@ -38,70 +46,91 @@ if st.button("Generate Dataset"):
38
 
39
  # Display the filtered data
40
  st.dataframe(filtered_entries)
41
-
42
  # Create a bar chart for accident count over days
43
  if not filtered_entries.empty:
44
- # Accident count over days
45
- accident_counts = filtered_entries['Accident Date'].value_counts().sort_index()
46
- accident_counts = accident_counts.reset_index()
47
- accident_counts.columns = ['Accident Date', 'Accident Count']
48
-
49
- fig1 = px.bar(accident_counts,
50
- x='Accident Date',
51
- y='Accident Count',
52
- title="Accident Count Over Days",
53
- labels={'Accident Date': 'Date', 'Accident Count': 'Number of Accidents'})
54
- st.plotly_chart(fig1)
55
-
56
- # Bar chart showing number of people killed each day
57
- # Grouping by 'Publish Date' and summing 'Killed' column
58
- killed_per_day = filtered_entries.groupby('Accident Date')['Killed'].sum().reset_index()
59
- killed_per_day.columns = ['Accident Date', 'Total Killed']
60
-
61
- fig2 = px.bar(killed_per_day,
62
- x='Accident Date',
63
- y='Total Killed',
64
- title="Number of People Killed Each Day",
65
- labels={'Accident Date': 'Date', 'Total Killed': 'Number of People Killed'},
66
- color='Total Killed',
67
- color_continuous_scale='Reds')
68
- st.plotly_chart(fig2)
69
-
70
- # Bar chart showing the number of accidents in each district
71
- district_accidents = filtered_entries['District'].value_counts().reset_index()
72
- district_accidents.columns = ['District', 'Number of Accidents']
73
- fig3 = px.bar(district_accidents,
74
- x='District',
75
- y='Number of Accidents',
76
- title="Accidents in Each District",
77
- labels={'Number of Accidents': 'Number of Accidents', 'District': 'District'},
78
- color='Number of Accidents',
79
- color_continuous_scale='Blues')
80
- st.plotly_chart(fig3)
81
-
82
- ### Pie Chart Code ###
83
- yes_count=0
84
- no_count=0
85
- not_available_count=0
86
- for i in range(len(filtered_entries)):
87
- if ('Yes' in filtered_entries['Pedestrian_Involved'][i] or 'yes' in filtered_entries['Pedestrian_Involved'][i]): yes_count+=1
88
- if ('No' in filtered_entries['Pedestrian_Involved'][i] or 'no' in filtered_entries['Pedestrian_Involved'][i]): no_count+=1
89
- if ('Not Available' in filtered_entries['Pedestrian_Involved'][i]): not_available_count+=1
90
- Pedestrian_Involved_list = ['Yes', 'No', 'Not Available']
91
- Count_list = [yes_count, no_count, not_available_count]
92
- # dictionary of lists
93
- dict = {'Pedestrian Involved': Pedestrian_Involved_list, 'Count':Count_list}
94
- pedestrian_involvement = pd.DataFrame(dict)
95
- # Pie chart showing the percentage of accidents involving pedestrians vs. those that don't
96
- # pedestrian_involvement = filtered_entries['Pedestrian_Involved'].value_counts().reset_index()
97
- # pedestrian_involvement.columns = ['Pedestrian Involved', 'Count']
98
-
99
- fig4 = px.pie(pedestrian_involvement,
100
- names='Pedestrian Involved',
101
- values='Count',
102
- title="Accidents Involving Pedestrians",
103
- labels={'Pedestrian Involved': 'Pedestrian Involved'})
104
- st.plotly_chart(fig4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
  else:
107
  st.write("No data available for the selected date range.")
 
28
  # Convert 'Publish Date' column to datetime with 'day-month-year' format
29
  df3['Publish Date'] = pd.to_datetime(df3['Publish Date'], format='%d-%m-%Y')
30
 
31
+ # Fixing date formats
32
+ for i in range(len(df3)):
33
+ if '/' in df3['Accident Date'][i]:
34
+ day=int(df3['Accident Date'][i].split('/')[0])
35
+ mon=int(df3['Accident Date'][i].split('/')[1])
36
+ yr=int(df3['Accident Date'][i].split('/')[2])
37
+ df3['Publish Date'][i]=f"{day}-{mon}-{yr}"
38
+ print(df3.tail())
39
  # Convert user input dates to datetime
40
  start_date = pd.to_datetime(start_string, format='%d-%m-%Y')
41
  end_date = pd.to_datetime(end_string, format='%d-%m-%Y')
 
46
 
47
  # Display the filtered data
48
  st.dataframe(filtered_entries)
 
49
  # Create a bar chart for accident count over days
50
  if not filtered_entries.empty:
51
+ # Create a bar chart for accident count over days
52
+ if not filtered_entries.empty:
53
+ import plotly.express as px
54
+
55
+ # Convert 'Accident Date' to datetime format
56
+ filtered_entries['Accident Date'] = pd.to_datetime(filtered_entries['Accident Date'], format='%d-%m-%Y')
57
+
58
+ # Count accidents per date and sort by date
59
+ accident_counts = filtered_entries['Accident Date'].value_counts().sort_index()
60
+
61
+ # Reset the index and rename columns
62
+ accident_counts = accident_counts.reset_index()
63
+ accident_counts.columns = ['Accident Date', 'Accident Count']
64
+
65
+ # Convert 'Accident Date' back to string format
66
+ accident_counts['Accident Date'] = accident_counts['Accident Date'].dt.strftime('%d-%m-%Y')
67
+ filtered_entries['Accident Date'] = accident_counts['Accident Date']
68
+ fig1 = px.bar(accident_counts,
69
+ x='Accident Date',
70
+ y='Accident Count',
71
+ title="Accident Count Over Days",
72
+ labels={'Accident Date': 'Date', 'Accident Count': 'Number of Accidents'},
73
+ color='Accident Count',
74
+ color_continuous_scale='Viridis')
75
+ st.plotly_chart(fig1)
76
+ # Convert 'Accident Date' to datetime format
77
+ filtered_entries['Accident Date'] = pd.to_datetime(filtered_entries['Accident Date'], format='%d-%m-%Y')
78
+
79
+ # Group by 'Accident Date' and sum the 'Killed' column
80
+ killed_per_day = filtered_entries.groupby('Accident Date')['Killed'].sum().reset_index()
81
+ killed_per_day.columns = ['Accident Date', 'Total Killed']
82
+
83
+ # Sort the dates in ascending order
84
+ killed_per_day = killed_per_day.sort_values(by='Accident Date')
85
+
86
+ # Convert 'Accident Date' back to string format
87
+ killed_per_day['Accident Date'] = killed_per_day['Accident Date'].dt.strftime('%d-%m-%Y')
88
+
89
+ fig2 = px.bar(killed_per_day,
90
+ x='Accident Date',
91
+ y='Total Killed',
92
+ title="Number of People Killed Each Day",
93
+ labels={'Accident Date': 'Date', 'Total Killed': 'Number of People Killed'},
94
+ color='Total Killed',
95
+ color_continuous_scale='Reds')
96
+ st.plotly_chart(fig2)
97
+
98
+ # Bar chart showing the number of accidents in each district
99
+ district_accidents = filtered_entries['District'].value_counts().reset_index()
100
+ district_accidents.columns = ['District', 'Number of Accidents']
101
+ fig3 = px.bar(district_accidents,
102
+ x='District',
103
+ y='Number of Accidents',
104
+ title="Accidents in Each District",
105
+ labels={'Number of Accidents': 'Number of Accidents', 'District': 'District'},
106
+ color='Number of Accidents',
107
+ color_continuous_scale='Cividis')
108
+ st.plotly_chart(fig3)
109
+
110
+ ### Pie Chart Code ###
111
+ yes_count=0
112
+ no_count=0
113
+ not_available_count=0
114
+ for i in range(len(filtered_entries)):
115
+ if ('Yes' in filtered_entries['Pedestrian_Involved'][i] or 'yes' in filtered_entries['Pedestrian_Involved'][i]): yes_count+=1
116
+ if ('No' in filtered_entries['Pedestrian_Involved'][i] or 'no' in filtered_entries['Pedestrian_Involved'][i]): no_count+=1
117
+ if ('Not Available' in filtered_entries['Pedestrian_Involved'][i]): not_available_count+=1
118
+ Pedestrian_Involved_list = ['Yes', 'No', 'Not Available']
119
+ Count_list = [yes_count, no_count, not_available_count]
120
+ # dictionary of lists
121
+ dict = {'Pedestrian Involved': Pedestrian_Involved_list, 'Count':Count_list}
122
+ pedestrian_involvement = pd.DataFrame(dict)
123
+ # Pie chart showing the percentage of accidents involving pedestrians vs. those that don't
124
+ # pedestrian_involvement = filtered_entries['Pedestrian_Involved'].value_counts().reset_index()
125
+ # pedestrian_involvement.columns = ['Pedestrian Involved', 'Count']
126
+
127
+ fig4 = px.pie(pedestrian_involvement,
128
+ names='Pedestrian Involved',
129
+ values='Count',
130
+ title="Accidents Involving Pedestrians",
131
+ labels={'Pedestrian Involved': 'Pedestrian Involved'},
132
+ color_discrete_sequence=['Green', 'Red', 'Blue'])
133
+ st.plotly_chart(fig4)
134
 
135
  else:
136
  st.write("No data available for the selected date range.")