{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import plotly.express as px\n", "from datetime import datetime" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "filtered_entries=pd.read_csv('test_set.csv')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "if 'Yes' in filtered_entries['Pedestrian_Involved'][3]: print('Available')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "yes_count=0\n", "no_count=0\n", "not_available_count=0\n", "for i in range(len(filtered_entries)):\n", " if ('Yes' in filtered_entries['Pedestrian_Involved'][i] or 'yes' in filtered_entries['Pedestrian_Involved'][i]): yes_count+=1\n", " if ('No' in filtered_entries['Pedestrian_Involved'][i] or 'no' in filtered_entries['Pedestrian_Involved'][i]): no_count+=1\n", " if ('Not Available' in filtered_entries['Pedestrian_Involved'][i]): not_available_count+=1\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "Pedestrian_Involved_list = ['Yes', 'No', 'Not Available']\n", "Count_list = [yes_count, no_count, not_available_count]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "8" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yes_count" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# dictionary of lists \n", "dict = {'Pedestrian Involved': Pedestrian_Involved_list, 'Count':Count_list} \n", "pedestrian_involvement = pd.DataFrame(dict)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Pedestrian Involved | \n", "Count | \n", "
---|---|---|
0 | \n", "Yes | \n", "8 | \n", "
1 | \n", "No | \n", "18 | \n", "
2 | \n", "Not Available | \n", "12 | \n", "