Spaces:
Runtime error
Runtime error
from transformers import AutoModelForSequenceClassification | |
from transformers import AutoTokenizer, AutoConfig | |
import numpy as np | |
from scipy.special import softmax | |
import gradio as gr | |
# Preprocess text (username and link placeholders) | |
def preprocess(text): | |
new_text = [] | |
for t in text.split(" "): | |
t = '@user' if t.startswith('@') and len(t) > 1 else t | |
t = 'http' if t.startswith('http') else t | |
new_text.append(t) | |
return " ".join(new_text) | |
# load model | |
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest" | |
model = AutoModelForSequenceClassification.from_pretrained(MODEL) | |
#model.save_pretrained(MODEL) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
config = AutoConfig.from_pretrained(MODEL) | |
# create classifier function | |
def classify_sentiments(text): | |
text = preprocess(text) | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores = output[0][0].detach().numpy() | |
scores = softmax(scores) | |
# Print labels and scores | |
probs = {} | |
ranking = np.argsort(scores) | |
ranking = ranking[::-1] | |
for i in range(len(scores)): | |
l = config.id2label[ranking[i]] | |
s = scores[ranking[i]] | |
probs[l] = np.round(float(s), 4) | |
return probs | |
#build the Gradio app | |
gr.Interface(classify_sentiments, 'text', 'label').launch() | |