Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
warnings.filterwarnings("ignore")
|
3 |
+
import pickle
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
import random
|
8 |
+
|
9 |
+
def import_model():
|
10 |
+
model_names = ['random_forest', 'xgboost', 'decision_tree']
|
11 |
+
loaded_models = tuple()
|
12 |
+
for model_name in model_names:
|
13 |
+
with open(f'models/{model_name}.pkl', 'rb') as file:
|
14 |
+
model = pickle.load(file)
|
15 |
+
loaded_models += (model,)
|
16 |
+
return loaded_models
|
17 |
+
|
18 |
+
def predict_liquid_rate(*input):
|
19 |
+
input_list = list(input)
|
20 |
+
inp_arr = np.array(input_list[:-1]).reshape(1, -1)
|
21 |
+
random_forest_model, xgboost_model, decision_tree_model = import_model()
|
22 |
+
model_selection = input_list[-1]
|
23 |
+
print(model_selection)
|
24 |
+
|
25 |
+
result = {}
|
26 |
+
model_names = {
|
27 |
+
'XGBoost': 'XGBoost Oil Rate',
|
28 |
+
'Random Forest': 'Random Forest Oil Rate',
|
29 |
+
'Decision Tree': 'Decision Tree Oil Rate',
|
30 |
+
'Prophet Model': 'Prophet Model Oil Rate'
|
31 |
+
}
|
32 |
+
xg_output = ''
|
33 |
+
dt_output = ''
|
34 |
+
rf_output = ''
|
35 |
+
for choice in model_selection:
|
36 |
+
if choice == 'XGBoost':
|
37 |
+
xg_pred = xgboost_model.predict(inp_arr)
|
38 |
+
result[choice] = xg_pred[0]
|
39 |
+
xg_output = f"{model_names['XGBoost']}: {result['XGBoost']:.2f} Bbls/day"
|
40 |
+
elif choice == 'Decision Tree':
|
41 |
+
dt_pred = decision_tree_model.predict(inp_arr)
|
42 |
+
result[choice] = dt_pred[0]
|
43 |
+
dt_output = f"{model_names['Decision Tree']}: {result['Decision Tree']:.2f} Bbls/day"
|
44 |
+
elif choice == 'Random Forest':
|
45 |
+
rf_pred = random_forest_model.predict(inp_arr)
|
46 |
+
result[choice] = rf_pred[0]
|
47 |
+
rf_output = f"{model_names['Random Forest']}: {result['Random Forest']:.2f} Bbls/day"
|
48 |
+
|
49 |
+
return xg_output, dt_output, rf_output
|
50 |
+
|
51 |
+
with gr.Blocks() as demo:
|
52 |
+
gr.Markdown(
|
53 |
+
"""
|
54 |
+
# Oil Rate Prediction
|
55 |
+
Use this table as Reference for Last Well test data.
|
56 |
+
""")
|
57 |
+
with gr.Column():
|
58 |
+
with gr.Box():
|
59 |
+
frame_output = gr.Dataframe(
|
60 |
+
value=[['2022-12-23', 32, 1000, 280, 0.45, 775.12]],
|
61 |
+
headers=['Date', 'Choke', 'FTHP', 'FLP', 'BS&W', 'OilRate'],
|
62 |
+
datatype=["str", "number", "number", "number", "number", "number"],
|
63 |
+
)
|
64 |
+
|
65 |
+
gr.Markdown(
|
66 |
+
""" Use the different input slider to select new welltest information
|
67 |
+
""")
|
68 |
+
with gr.Box():
|
69 |
+
choke = gr.Slider(minimum=0, maximum=100, value=32, step=2, label="Choke Size (1/64\")", interactive=True)
|
70 |
+
fthp = gr.Slider(minimum=500, maximum=5000, step=1, value=1000, label="Tubing Head Pressure (FTHP)(psi)", interactive=True)
|
71 |
+
flp = gr.Slider(minimum=0, maximum=5000, step=1, value=280,label="Flow Line Pressure (FLP)(psi)", interactive=True)
|
72 |
+
bsw = gr.Slider(minimum=0, maximum=100, value=0.45, label="Basic Sediment and Water (BS&W)(%)", interactive=True)
|
73 |
+
|
74 |
+
gr.Markdown(
|
75 |
+
""" Use the different trained models to perform Oil rate prediction
|
76 |
+
""")
|
77 |
+
# Output Controls
|
78 |
+
with gr.Column():
|
79 |
+
select_model = gr.CheckboxGroup(choices=["Random Forest", "XGBoost", "Decision Tree"], value='XGBoost', label="Select Model", info="Select Model to make prediction", interactive=True)
|
80 |
+
btn_predict = gr.Button("Test Prediction")
|
81 |
+
xg_output = gr.Label(label="XGBoost model")
|
82 |
+
dt_output = gr.Label(label="Decision Tree")
|
83 |
+
rf_output = gr.Label(label="Random Forest")
|
84 |
+
|
85 |
+
|
86 |
+
input_items = [choke, fthp, flp, bsw, select_model]
|
87 |
+
btn_predict.click(fn=predict_liquid_rate, inputs=input_items, outputs=[xg_output,dt_output,rf_output])
|
88 |
+
#gr.describe()
|
89 |
+
|
90 |
+
demo.launch(debug=True, share=True)
|