Spaces:
Build error
Build error
File size: 5,211 Bytes
c47212f 4d9d3fd c47212f ba988d8 abf5123 ba988d8 abf5123 c47212f 4d9d3fd c47212f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
CHROMA_PATH = "chroma"
DATA_PATH = "data"
from fastapi import FastAPI
import argparse
import os
import shutil
from langchain_community.document_loaders.pdf import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema.document import Document
from get_embedding_function import get_embedding_function
from langchain_community.vectorstores import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain_community.llms.ollama import Ollama
from pydantic import BaseModel
PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""
app = FastAPI()
from langchain_community.embeddings.ollama import OllamaEmbeddings
from langchain_community.embeddings.bedrock import BedrockEmbeddings
#
def get_embedding_function():
# embeddings = BedrockEmbeddings(
# credentials_profile_name="default", region_name="us-east-1"
# )
embeddings = OllamaEmbeddings(model="nomic-embed-text")
return embeddings
def load_documents():
document_loader = PyPDFDirectoryLoader(DATA_PATH)
return document_loader.load()
def split_documents(documents: list[Document]):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=80,
length_function=len,
is_separator_regex=False,
)
return text_splitter.split_documents(documents)
def add_to_chroma(chunks: list[Document]):
# Load the existing database.
db = Chroma(
persist_directory=CHROMA_PATH, embedding_function=get_embedding_function()
)
# Calculate Page IDs.
chunks_with_ids = calculate_chunk_ids(chunks)
# Add or Update the documents.
existing_items = db.get(include=[]) # IDs are always included by default
existing_ids = set(existing_items["ids"])
print(f"Number of existing documents in DB: {len(existing_ids)}")
# Only add documents that don't exist in the DB.
new_chunks = []
for chunk in chunks_with_ids:
if chunk.metadata["id"] not in existing_ids:
new_chunks.append(chunk)
if len(new_chunks):
print(f"π Adding new documents: {len(new_chunks)}")
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
db.add_documents(new_chunks, ids=new_chunk_ids)
db.persist()
else:
print("β
No new documents to add")
def calculate_chunk_ids(chunks):
# This will create IDs like "data/monopoly.pdf:6:2"
# Page Source : Page Number : Chunk Index
last_page_id = None
current_chunk_index = 0
for chunk in chunks:
source = chunk.metadata.get("source")
page = chunk.metadata.get("page")
current_page_id = f"{source}:{page}"
# If the page ID is the same as the last one, increment the index.
if current_page_id == last_page_id:
current_chunk_index += 1
else:
current_chunk_index = 0
# Calculate the chunk ID.
chunk_id = f"{current_page_id}:{current_chunk_index}"
last_page_id = current_page_id
# Add it to the page meta-data.
chunk.metadata["id"] = chunk_id
return chunks
def clear_database():
if os.path.exists(CHROMA_PATH):
shutil.rmtree(CHROMA_PATH)
return {""}
@app.get("/")
def greet_json():
return {"Hello": "World!"}
class QueryRequest(BaseModel):
query_text: str
@app.get("/train")
def train():
# Check if the database should be cleared (using the --clear flag).
# parser = argparse.ArgumentParser()
# parser.add_argument("--reset", action="store_true", help="Reset the database.")
# args = parser.parse_args()
# if args.reset:
# print("β¨ Clearing Database")
# clear_database()
# Create (or update) the data store.
documents = load_documents()
chunks = split_documents(documents)
add_to_chroma(chunks)
@app.get("/cleardb")
def cleardb():
# Check if the database should be cleared (using the --clear flag).
# parser = argparse.ArgumentParser()
# parser.add_argument("--reset", action="store_true", help="Reset the database.")
# args = parser.parse_args()
# if args.reset:
print("β¨ Clearing Database")
clear_database()
@app.get("/query")
def query(request: QueryRequest):
query_text = request.query_text
# Prepare the DB.
embedding_function = get_embedding_function()
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
# Search the DB.
results = db.similarity_search_with_score(query_text, k=5)
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
# print(prompt)
model = Ollama(model="mistral")
response_text = model.invoke(prompt)
sources = [doc.metadata.get("id", None) for doc, _score in results]
formatted_response = f"Response: {response_text}\nSources: {sources}"
print(formatted_response)
return response_text
|