Spaces:
Sleeping
Sleeping
application file
Browse files
app.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
|
6 |
+
import tensorflow as tf
|
7 |
+
import tensorflow.keras.backend as K
|
8 |
+
from keras.preprocessing import image
|
9 |
+
|
10 |
+
from ResUNet import *
|
11 |
+
|
12 |
+
from eff import *
|
13 |
+
from vit import *
|
14 |
+
|
15 |
+
# Define the image transformation
|
16 |
+
transform = transforms.Compose([
|
17 |
+
transforms.ToTensor(),
|
18 |
+
transforms.Resize((224, 224)),
|
19 |
+
])
|
20 |
+
|
21 |
+
examples1 = [
|
22 |
+
f"examples/Eff_ViT/Classification_{i}.jpg" for i in range(0, 4)
|
23 |
+
]
|
24 |
+
|
25 |
+
def classification(image):
|
26 |
+
input_tensor = transform(image).unsqueeze(0).to(CFG.DEVICE) # Add batch dimension
|
27 |
+
|
28 |
+
input_batch = input_tensor
|
29 |
+
|
30 |
+
# Perform inference
|
31 |
+
with torch.no_grad():
|
32 |
+
output1 = efficientnet_model(input_batch).to(CFG.DEVICE)
|
33 |
+
output2 = efficientnet_model(input_batch).to(CFG.DEVICE)
|
34 |
+
output3 = vit_model(input_batch).to(CFG.DEVICE)
|
35 |
+
|
36 |
+
# You can now use the 'output' tensor as needed (e.g., get predictions)
|
37 |
+
# print(output)
|
38 |
+
res1 = torch.softmax(output1, dim=1)
|
39 |
+
res2 = torch.softmax(output2, dim=1)
|
40 |
+
res3 = torch.softmax(output3, dim=1)
|
41 |
+
|
42 |
+
probs1 = {class_names[i]: float(res1[0][i]) for i in range(len(class_names))}
|
43 |
+
probs2 = {class_names[i]: float(res2[0][i]) for i in range(len(class_names))}
|
44 |
+
probs3 = {class_names[i]: float(res3[0][i]) for i in range(len(class_names))}
|
45 |
+
|
46 |
+
return probs1, probs2, probs3
|
47 |
+
|
48 |
+
|
49 |
+
classify = gr.Interface(
|
50 |
+
fn=classification,
|
51 |
+
inputs=[
|
52 |
+
gr.Image(label="Image"),
|
53 |
+
# gr.Radio(["EfficientNetB3", "EfficientNetV2", "ViT"], value="ViT")
|
54 |
+
],
|
55 |
+
outputs=[
|
56 |
+
gr.Label(num_top_classes = 3, label = "EfficientNet-B3"),
|
57 |
+
gr.Label(num_top_classes = 3, label = "EfficientNet-V2"),
|
58 |
+
gr.Label(num_top_classes = 3, label = "ViT"),
|
59 |
+
],
|
60 |
+
examples=examples1,
|
61 |
+
cache_examples=True
|
62 |
+
)
|
63 |
+
|
64 |
+
# ---------------------------------------------------------
|
65 |
+
|
66 |
+
seg_model = load_model()
|
67 |
+
seg_model.load_weights("ResUNet-segModel-weights.hdf5")
|
68 |
+
|
69 |
+
|
70 |
+
examples2 = [
|
71 |
+
f"examples/ResUNet/{i}.jpg" for i in range(5)
|
72 |
+
]
|
73 |
+
|
74 |
+
def detection(img):
|
75 |
+
org_img = img
|
76 |
+
|
77 |
+
img = img *1./255.
|
78 |
+
|
79 |
+
#reshaping
|
80 |
+
img = cv2.resize(img, (256,256))
|
81 |
+
|
82 |
+
# converting img into array
|
83 |
+
img = np.array(img, dtype=np.float64)
|
84 |
+
|
85 |
+
#reshaping the image from 256,256,3 to 1,256,256,3
|
86 |
+
img = np.reshape(img, (1,256,256,3))
|
87 |
+
|
88 |
+
|
89 |
+
#Creating a empty array of shape 1,256,256,1
|
90 |
+
X = np.empty((1,256,256,3))
|
91 |
+
|
92 |
+
# standardising the image
|
93 |
+
img -= img.mean()
|
94 |
+
img /= img.std()
|
95 |
+
|
96 |
+
#converting the shape of image from 256,256,3 to 1,256,256,3
|
97 |
+
X[0,] = img
|
98 |
+
|
99 |
+
#make prediction of mask
|
100 |
+
predict = seg_model.predict(X)
|
101 |
+
|
102 |
+
|
103 |
+
pred = np.array(predict[0]).squeeze().round()
|
104 |
+
|
105 |
+
|
106 |
+
img_ = cv2.resize(org_img, (256,256))
|
107 |
+
img_ = cv2.cvtColor(img_, cv2.COLOR_BGR2RGB)
|
108 |
+
img_[pred==1] = (0,255,150)
|
109 |
+
|
110 |
+
plt.imshow(img_)
|
111 |
+
plt.axis("off")
|
112 |
+
image_path = "plot.png"
|
113 |
+
plt.savefig(image_path)
|
114 |
+
|
115 |
+
return gr.update(value=image_path, visible=True)
|
116 |
+
|
117 |
+
|
118 |
+
detect = gr.Interface(
|
119 |
+
fn=detection,
|
120 |
+
inputs=[
|
121 |
+
gr.Image(label="Image")
|
122 |
+
],
|
123 |
+
outputs=[
|
124 |
+
gr.Image(label="Output")
|
125 |
+
],
|
126 |
+
examples=examples2,
|
127 |
+
cache_examples=True
|
128 |
+
)
|
129 |
+
|
130 |
+
# ##########################################
|
131 |
+
|
132 |
+
# def data_viewer(label="Pituitary", count=10):
|
133 |
+
# results = []
|
134 |
+
|
135 |
+
# if(label == "Segmentation"):
|
136 |
+
# for i in range((count//2)+1):
|
137 |
+
# results.append(f"Images/{label}/original_image_{i}.png")
|
138 |
+
# results.append(f"Images/{label}/image_with_mask_{i}.png")
|
139 |
+
|
140 |
+
# else:
|
141 |
+
|
142 |
+
# for i in range(count):
|
143 |
+
# results.append(f"Images/{label}/{i}.jpg")
|
144 |
+
|
145 |
+
# return results
|
146 |
+
|
147 |
+
|
148 |
+
# view_data = gr.Interface(
|
149 |
+
# fn = data_viewer,
|
150 |
+
# inputs = [
|
151 |
+
# gr.Dropdown(
|
152 |
+
# ["Glioma", "Meningioma", "Pituitary", "Segmentation"], label="Category"
|
153 |
+
# ),
|
154 |
+
# gr.Slider(0, 12, value=4, step=2)
|
155 |
+
# ],
|
156 |
+
# outputs = [
|
157 |
+
# gr.Gallery(columns=2),
|
158 |
+
# ]
|
159 |
+
# )
|
160 |
+
|
161 |
+
# ##########################
|
162 |
+
|
163 |
+
from huggingface_hub import InferenceClient
|
164 |
+
|
165 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
166 |
+
|
167 |
+
def format_prompt(message, history):
|
168 |
+
prompt = "<s>"
|
169 |
+
for user_prompt, bot_response in history:
|
170 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
171 |
+
prompt += f" {bot_response}</s> "
|
172 |
+
prompt += f"[INST] {message} [/INST]"
|
173 |
+
return prompt
|
174 |
+
|
175 |
+
def generate(
|
176 |
+
prompt, history, temperature=0.2, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0,
|
177 |
+
):
|
178 |
+
temperature = float(temperature)
|
179 |
+
if temperature < 1e-2:
|
180 |
+
temperature = 1e-2
|
181 |
+
top_p = float(top_p)
|
182 |
+
|
183 |
+
generate_kwargs = dict(
|
184 |
+
temperature=temperature,
|
185 |
+
max_new_tokens=max_new_tokens,
|
186 |
+
top_p=top_p,
|
187 |
+
repetition_penalty=repetition_penalty,
|
188 |
+
do_sample=True,
|
189 |
+
seed=42,
|
190 |
+
)
|
191 |
+
|
192 |
+
formatted_prompt = format_prompt(prompt, history)
|
193 |
+
|
194 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
195 |
+
output = ""
|
196 |
+
|
197 |
+
for response in stream:
|
198 |
+
output += response.token.text
|
199 |
+
yield output
|
200 |
+
return output
|
201 |
+
|
202 |
+
|
203 |
+
mychatbot = gr.Chatbot(
|
204 |
+
avatar_images=["Chatbot/user.png", "Chatbot/botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)
|
205 |
+
|
206 |
+
chatbot = gr.ChatInterface(
|
207 |
+
fn=generate,
|
208 |
+
chatbot=mychatbot,
|
209 |
+
examples=[
|
210 |
+
"What is Brain Tumor and its types?",
|
211 |
+
"What is a tumor's grade? What does this mean?",
|
212 |
+
"What are some of the treatment options for Brain Tumor?",
|
213 |
+
"What causes brain tumors?",
|
214 |
+
"If I have a brain tumor, can I pass it on to my children?"
|
215 |
+
],
|
216 |
+
)
|
217 |
+
|
218 |
+
|
219 |
+
demo = gr.TabbedInterface([classify, detect, chatbot], ["Classification", "Detection", "ChatBot"])
|
220 |
+
|
221 |
+
demo.launch()
|