import streamlit as st from pocketsphinx import LiveSpeech, get_model_path import os import sounddevice as sd import numpy as np import scipy.io.wavfile as wav # Function to capture audio from the mic def record_audio(filename='temp.wav', duration=5, fs=16000): st.text("Recording Audio...") with st.spinner(f'Recording for {duration} seconds...'): myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=1) sd.wait() # Waits until recording is finished wav.write(filename, fs, myrecording) # Save as WAV file # Get the model path for pocketsphinx model_path = get_model_path() config = { 'verbose': False, 'hmm': os.path.join(model_path, 'en-us'), 'lm': os.path.join(model_path, 'en-us.lm.bin'), 'dict': os.path.join(model_path, 'cmudict-en-us.dict') } # Streamlit UI st.title("Simple Speech Recognition with Streamlit and PocketSphinx") button = st.button("Press to Speak") # Store the state of the recording if 'recording_done' not in st.session_state: st.session_state.recording_done = False # When the button is pressed if button: # Record the audio record_audio() st.session_state.recording_done = True # If an audio was recorded, process it with PocketSphinx if st.session_state.recording_done: audio = LiveSpeech(**config) st.text("Processing Audio...") with st.spinner('Recognizing...'): for phrase in audio: st.write(phrase) break # We'll stop after the first phrase # Reset the state st.session_state.recording_done = False