Thaweewat commited on
Commit
84db587
·
1 Parent(s): 2e63965

Added Function

Browse files
Files changed (2) hide show
  1. .idea/workspace.xml +2 -2
  2. app.py +10 -91
.idea/workspace.xml CHANGED
@@ -5,7 +5,7 @@
5
  </component>
6
  <component name="ChangeListManager">
7
  <list default="true" id="3cb50146-66c1-4999-864a-398a7d42ffa4" name="Changes" comment="">
8
- <change afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
9
  </list>
10
  <option name="SHOW_DIALOG" value="false" />
11
  <option name="HIGHLIGHT_CONFLICTS" value="true" />
@@ -46,7 +46,7 @@
46
  <option name="number" value="Default" />
47
  <option name="presentableId" value="Default" />
48
  <updated>1677222707113</updated>
49
- <workItem from="1677222708286" duration="1445000" />
50
  </task>
51
  <servers />
52
  </component>
 
5
  </component>
6
  <component name="ChangeListManager">
7
  <list default="true" id="3cb50146-66c1-4999-864a-398a7d42ffa4" name="Changes" comment="">
8
+ <change beforePath="$PROJECT_DIR$/app.py" beforeDir="false" afterPath="$PROJECT_DIR$/app.py" afterDir="false" />
9
  </list>
10
  <option name="SHOW_DIALOG" value="false" />
11
  <option name="HIGHLIGHT_CONFLICTS" value="true" />
 
46
  <option name="number" value="Default" />
47
  <option name="presentableId" value="Default" />
48
  <updated>1677222707113</updated>
49
+ <workItem from="1677222708286" duration="2503000" />
50
  </task>
51
  <servers />
52
  </component>
app.py CHANGED
@@ -42,54 +42,17 @@ ddim_sampler_scribble = DDIMSampler(scribble_model)
42
 
43
  save_memory = False
44
 
45
- def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
46
- # TODO: Add other control tasks
47
- if input_control == "Scribble":
48
- return process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)
49
- elif input_control == "Pose":
50
- return process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, image_resolution, ddim_steps, scale, seed, eta)
51
-
52
- return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
53
-
54
- def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
55
- with torch.no_grad():
56
- img = resize_image(HWC3(input_image), image_resolution)
57
- H, W, C = img.shape
58
-
59
- detected_map = apply_canny(img, low_threshold, high_threshold)
60
- detected_map = HWC3(detected_map)
61
-
62
- control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
63
- control = torch.stack([control for _ in range(num_samples)], dim=0)
64
- control = einops.rearrange(control, 'b h w c -> b c h w').clone()
65
-
66
- seed_everything(seed)
67
-
68
- if save_memory:
69
- canny_model.low_vram_shift(is_diffusing=False)
70
 
71
- cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
72
- un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]}
73
- shape = (4, H // 8, W // 8)
74
 
75
- if save_memory:
76
- canny_model.low_vram_shift(is_diffusing=False)
77
 
78
- samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
79
- shape, cond, verbose=False, eta=eta,
80
- unconditional_guidance_scale=scale,
81
- unconditional_conditioning=un_cond)
82
 
83
- if save_memory:
84
- canny_model.low_vram_shift(is_diffusing=False)
85
-
86
- x_samples = canny_model.decode_first_stage(samples)
87
- x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
88
-
89
- results = [x_samples[i] for i in range(num_samples)]
90
- return [255 - detected_map] + results
91
-
92
- def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
93
  with torch.no_grad():
94
  img = resize_image(HWC3(input_image), image_resolution)
95
  H, W, C = img.shape
@@ -127,48 +90,6 @@ def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image
127
  results = [x_samples[i] for i in range(num_samples)]
128
  return [255 - detected_map] + results
129
 
130
- def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta):
131
- with torch.no_grad():
132
- input_image = HWC3(input_image)
133
- detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
134
- detected_map = HWC3(detected_map)
135
- img = resize_image(input_image, image_resolution)
136
- H, W, C = img.shape
137
-
138
- detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
139
-
140
- control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
141
- control = torch.stack([control for _ in range(num_samples)], dim=0)
142
- control = einops.rearrange(control, 'b h w c -> b c h w').clone()
143
-
144
- if seed == -1:
145
- seed = random.randint(0, 65535)
146
- seed_everything(seed)
147
-
148
- if save_memory:
149
- pose_model.low_vram_shift(is_diffusing=False)
150
-
151
-
152
- cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
153
- un_cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([n_prompt] * num_samples)]}
154
- shape = (4, H // 8, W // 8)
155
-
156
- if save_memory:
157
- pose_model.low_vram_shift(is_diffusing=False)
158
-
159
- samples, intermediates = ddim_sampler_pose.sample(ddim_steps, num_samples,
160
- shape, cond, verbose=False, eta=eta,
161
- unconditional_guidance_scale=scale,
162
- unconditional_conditioning=un_cond)
163
-
164
- if save_memory:
165
- pose_model.low_vram_shift(is_diffusing=False)
166
-
167
- x_samples = pose_model.decode_first_stage(samples)
168
- x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
169
-
170
- results = [x_samples[i] for i in range(num_samples)]
171
- return [detected_map] + results
172
 
173
  def create_canvas(w, h):
174
  new_control_options = ["Interactive Scribble"]
@@ -191,8 +112,8 @@ with block:
191
  with gr.Row():
192
  with gr.Column():
193
  input_image = gr.Image(source='upload', type="numpy")
194
- input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task")
195
- prompt = gr.Textbox(label="Prompt")
196
  run_button = gr.Button(label="Run")
197
 
198
  with gr.Accordion("Advanced options", open=False):
@@ -204,9 +125,7 @@ with block:
204
  scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
205
  seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
206
  eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1)
207
- a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
208
- n_prompt = gr.Textbox(label="Negative Prompt",
209
- value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality')
210
  with gr.Column():
211
  result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
212
  ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
 
42
 
43
  save_memory = False
44
 
45
+ def process(input_image, prompt, input_control, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
46
+ # TODO: Clean Function for single Task
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ if input_control == "Scribble":
49
+ return process_scribble(input_image, prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)
 
50
 
51
+ def process_scribble(input_image, prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
 
52
 
53
+ a_prompt = 'best quality, extremely detailed, architecture render, photorealistic, hyper realistic, surreal, dali, 3d rendering, render, 8k, 16k, extremely detailed, unreal engine, octane, maya'
54
+ n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality'
 
 
55
 
 
 
 
 
 
 
 
 
 
 
56
  with torch.no_grad():
57
  img = resize_image(HWC3(input_image), image_resolution)
58
  H, W, C = img.shape
 
90
  results = [x_samples[i] for i in range(num_samples)]
91
  return [255 - detected_map] + results
92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
  def create_canvas(w, h):
95
  new_control_options = ["Interactive Scribble"]
 
112
  with gr.Row():
113
  with gr.Column():
114
  input_image = gr.Image(source='upload', type="numpy")
115
+ input_control = gr.Dropdown(control_task_list, value="Scribble", label="Task")
116
+ prompt = gr.Textbox(label="Architectural Style")
117
  run_button = gr.Button(label="Run")
118
 
119
  with gr.Accordion("Advanced options", open=False):
 
125
  scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
126
  seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
127
  eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1)
128
+
 
 
129
  with gr.Column():
130
  result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
131
  ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]