Added Function
Browse files- .idea/workspace.xml +2 -2
- app.py +10 -91
.idea/workspace.xml
CHANGED
@@ -5,7 +5,7 @@
|
|
5 |
</component>
|
6 |
<component name="ChangeListManager">
|
7 |
<list default="true" id="3cb50146-66c1-4999-864a-398a7d42ffa4" name="Changes" comment="">
|
8 |
-
<change afterPath="$PROJECT_DIR
|
9 |
</list>
|
10 |
<option name="SHOW_DIALOG" value="false" />
|
11 |
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
@@ -46,7 +46,7 @@
|
|
46 |
<option name="number" value="Default" />
|
47 |
<option name="presentableId" value="Default" />
|
48 |
<updated>1677222707113</updated>
|
49 |
-
<workItem from="1677222708286" duration="
|
50 |
</task>
|
51 |
<servers />
|
52 |
</component>
|
|
|
5 |
</component>
|
6 |
<component name="ChangeListManager">
|
7 |
<list default="true" id="3cb50146-66c1-4999-864a-398a7d42ffa4" name="Changes" comment="">
|
8 |
+
<change beforePath="$PROJECT_DIR$/app.py" beforeDir="false" afterPath="$PROJECT_DIR$/app.py" afterDir="false" />
|
9 |
</list>
|
10 |
<option name="SHOW_DIALOG" value="false" />
|
11 |
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
|
|
46 |
<option name="number" value="Default" />
|
47 |
<option name="presentableId" value="Default" />
|
48 |
<updated>1677222707113</updated>
|
49 |
+
<workItem from="1677222708286" duration="2503000" />
|
50 |
</task>
|
51 |
<servers />
|
52 |
</component>
|
app.py
CHANGED
@@ -42,54 +42,17 @@ ddim_sampler_scribble = DDIMSampler(scribble_model)
|
|
42 |
|
43 |
save_memory = False
|
44 |
|
45 |
-
def process(input_image, prompt, input_control,
|
46 |
-
# TODO:
|
47 |
-
if input_control == "Scribble":
|
48 |
-
return process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)
|
49 |
-
elif input_control == "Pose":
|
50 |
-
return process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, image_resolution, ddim_steps, scale, seed, eta)
|
51 |
-
|
52 |
-
return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
|
53 |
-
|
54 |
-
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
55 |
-
with torch.no_grad():
|
56 |
-
img = resize_image(HWC3(input_image), image_resolution)
|
57 |
-
H, W, C = img.shape
|
58 |
-
|
59 |
-
detected_map = apply_canny(img, low_threshold, high_threshold)
|
60 |
-
detected_map = HWC3(detected_map)
|
61 |
-
|
62 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
63 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
64 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
65 |
-
|
66 |
-
seed_everything(seed)
|
67 |
-
|
68 |
-
if save_memory:
|
69 |
-
canny_model.low_vram_shift(is_diffusing=False)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
shape = (4, H // 8, W // 8)
|
74 |
|
75 |
-
|
76 |
-
canny_model.low_vram_shift(is_diffusing=False)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
unconditional_guidance_scale=scale,
|
81 |
-
unconditional_conditioning=un_cond)
|
82 |
|
83 |
-
if save_memory:
|
84 |
-
canny_model.low_vram_shift(is_diffusing=False)
|
85 |
-
|
86 |
-
x_samples = canny_model.decode_first_stage(samples)
|
87 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
88 |
-
|
89 |
-
results = [x_samples[i] for i in range(num_samples)]
|
90 |
-
return [255 - detected_map] + results
|
91 |
-
|
92 |
-
def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
|
93 |
with torch.no_grad():
|
94 |
img = resize_image(HWC3(input_image), image_resolution)
|
95 |
H, W, C = img.shape
|
@@ -127,48 +90,6 @@ def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image
|
|
127 |
results = [x_samples[i] for i in range(num_samples)]
|
128 |
return [255 - detected_map] + results
|
129 |
|
130 |
-
def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta):
|
131 |
-
with torch.no_grad():
|
132 |
-
input_image = HWC3(input_image)
|
133 |
-
detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
|
134 |
-
detected_map = HWC3(detected_map)
|
135 |
-
img = resize_image(input_image, image_resolution)
|
136 |
-
H, W, C = img.shape
|
137 |
-
|
138 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
|
139 |
-
|
140 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
141 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
142 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
143 |
-
|
144 |
-
if seed == -1:
|
145 |
-
seed = random.randint(0, 65535)
|
146 |
-
seed_everything(seed)
|
147 |
-
|
148 |
-
if save_memory:
|
149 |
-
pose_model.low_vram_shift(is_diffusing=False)
|
150 |
-
|
151 |
-
|
152 |
-
cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
153 |
-
un_cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
154 |
-
shape = (4, H // 8, W // 8)
|
155 |
-
|
156 |
-
if save_memory:
|
157 |
-
pose_model.low_vram_shift(is_diffusing=False)
|
158 |
-
|
159 |
-
samples, intermediates = ddim_sampler_pose.sample(ddim_steps, num_samples,
|
160 |
-
shape, cond, verbose=False, eta=eta,
|
161 |
-
unconditional_guidance_scale=scale,
|
162 |
-
unconditional_conditioning=un_cond)
|
163 |
-
|
164 |
-
if save_memory:
|
165 |
-
pose_model.low_vram_shift(is_diffusing=False)
|
166 |
-
|
167 |
-
x_samples = pose_model.decode_first_stage(samples)
|
168 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
169 |
-
|
170 |
-
results = [x_samples[i] for i in range(num_samples)]
|
171 |
-
return [detected_map] + results
|
172 |
|
173 |
def create_canvas(w, h):
|
174 |
new_control_options = ["Interactive Scribble"]
|
@@ -191,8 +112,8 @@ with block:
|
|
191 |
with gr.Row():
|
192 |
with gr.Column():
|
193 |
input_image = gr.Image(source='upload', type="numpy")
|
194 |
-
input_control = gr.Dropdown(control_task_list, value="Scribble", label="
|
195 |
-
prompt = gr.Textbox(label="
|
196 |
run_button = gr.Button(label="Run")
|
197 |
|
198 |
with gr.Accordion("Advanced options", open=False):
|
@@ -204,9 +125,7 @@ with block:
|
|
204 |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
205 |
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
|
206 |
eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1)
|
207 |
-
|
208 |
-
n_prompt = gr.Textbox(label="Negative Prompt",
|
209 |
-
value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality')
|
210 |
with gr.Column():
|
211 |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
212 |
ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
|
|
|
42 |
|
43 |
save_memory = False
|
44 |
|
45 |
+
def process(input_image, prompt, input_control, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
46 |
+
# TODO: Clean Function for single Task
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
if input_control == "Scribble":
|
49 |
+
return process_scribble(input_image, prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)
|
|
|
50 |
|
51 |
+
def process_scribble(input_image, prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
|
|
|
52 |
|
53 |
+
a_prompt = 'best quality, extremely detailed, architecture render, photorealistic, hyper realistic, surreal, dali, 3d rendering, render, 8k, 16k, extremely detailed, unreal engine, octane, maya'
|
54 |
+
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality'
|
|
|
|
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
with torch.no_grad():
|
57 |
img = resize_image(HWC3(input_image), image_resolution)
|
58 |
H, W, C = img.shape
|
|
|
90 |
results = [x_samples[i] for i in range(num_samples)]
|
91 |
return [255 - detected_map] + results
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
def create_canvas(w, h):
|
95 |
new_control_options = ["Interactive Scribble"]
|
|
|
112 |
with gr.Row():
|
113 |
with gr.Column():
|
114 |
input_image = gr.Image(source='upload', type="numpy")
|
115 |
+
input_control = gr.Dropdown(control_task_list, value="Scribble", label="Task")
|
116 |
+
prompt = gr.Textbox(label="Architectural Style")
|
117 |
run_button = gr.Button(label="Run")
|
118 |
|
119 |
with gr.Accordion("Advanced options", open=False):
|
|
|
125 |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
126 |
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
|
127 |
eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1)
|
128 |
+
|
|
|
|
|
129 |
with gr.Column():
|
130 |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
131 |
ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
|