Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import einops
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from pytorch_lightning import seed_everything
|
8 |
+
from util import resize_image, HWC3, apply_canny
|
9 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
10 |
+
from annotator.openpose import apply_openpose
|
11 |
+
from cldm.model import create_model, load_state_dict
|
12 |
+
from huggingface_hub import hf_hub_url, cached_download
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
REPO_ID = "Thaweewat/ControlNet-Architecture"
|
17 |
+
canny_checkpoint = "models/control_sd15_canny.pth"
|
18 |
+
scribble_checkpoint = "models/control_sd15_scribble.pth"
|
19 |
+
pose_checkpoint = "models/control_sd15_openpose.pth"
|
20 |
+
|
21 |
+
|
22 |
+
canny_model = create_model('./models/cldm_v15.yaml').cpu()
|
23 |
+
canny_model.load_state_dict(load_state_dict(cached_download(
|
24 |
+
hf_hub_url(REPO_ID, canny_checkpoint)
|
25 |
+
), location='cpu'))
|
26 |
+
canny_model = canny_model.cuda()
|
27 |
+
ddim_sampler = DDIMSampler(canny_model)
|
28 |
+
|
29 |
+
pose_model = create_model('./models/cldm_v15.yaml').cpu()
|
30 |
+
pose_model.load_state_dict(load_state_dict(cached_download(
|
31 |
+
hf_hub_url(REPO_ID, pose_checkpoint)
|
32 |
+
), location='cpu'))
|
33 |
+
pose_model = pose_model.cuda()
|
34 |
+
ddim_sampler_pose = DDIMSampler(pose_model)
|
35 |
+
|
36 |
+
scribble_model = create_model('./models/cldm_v15.yaml').cpu()
|
37 |
+
scribble_model.load_state_dict(load_state_dict(cached_download(
|
38 |
+
hf_hub_url(REPO_ID, scribble_checkpoint)
|
39 |
+
), location='cpu'))
|
40 |
+
scribble_model = scribble_model.cuda()
|
41 |
+
ddim_sampler_scribble = DDIMSampler(scribble_model)
|
42 |
+
|
43 |
+
save_memory = False
|
44 |
+
|
45 |
+
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
46 |
+
# TODO: Add other control tasks
|
47 |
+
if input_control == "Scribble":
|
48 |
+
return process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta)
|
49 |
+
elif input_control == "Pose":
|
50 |
+
return process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, image_resolution, ddim_steps, scale, seed, eta)
|
51 |
+
|
52 |
+
return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
|
53 |
+
|
54 |
+
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
55 |
+
with torch.no_grad():
|
56 |
+
img = resize_image(HWC3(input_image), image_resolution)
|
57 |
+
H, W, C = img.shape
|
58 |
+
|
59 |
+
detected_map = apply_canny(img, low_threshold, high_threshold)
|
60 |
+
detected_map = HWC3(detected_map)
|
61 |
+
|
62 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
63 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
64 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
65 |
+
|
66 |
+
seed_everything(seed)
|
67 |
+
|
68 |
+
if save_memory:
|
69 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
70 |
+
|
71 |
+
cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
72 |
+
un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
73 |
+
shape = (4, H // 8, W // 8)
|
74 |
+
|
75 |
+
if save_memory:
|
76 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
77 |
+
|
78 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
79 |
+
shape, cond, verbose=False, eta=eta,
|
80 |
+
unconditional_guidance_scale=scale,
|
81 |
+
unconditional_conditioning=un_cond)
|
82 |
+
|
83 |
+
if save_memory:
|
84 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
85 |
+
|
86 |
+
x_samples = canny_model.decode_first_stage(samples)
|
87 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
88 |
+
|
89 |
+
results = [x_samples[i] for i in range(num_samples)]
|
90 |
+
return [255 - detected_map] + results
|
91 |
+
|
92 |
+
def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
|
93 |
+
with torch.no_grad():
|
94 |
+
img = resize_image(HWC3(input_image), image_resolution)
|
95 |
+
H, W, C = img.shape
|
96 |
+
|
97 |
+
detected_map = np.zeros_like(img, dtype=np.uint8)
|
98 |
+
detected_map[np.min(img, axis=2) < 127] = 255
|
99 |
+
|
100 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
101 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
102 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
103 |
+
|
104 |
+
seed_everything(seed)
|
105 |
+
|
106 |
+
if save_memory:
|
107 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
108 |
+
|
109 |
+
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
110 |
+
un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
111 |
+
shape = (4, H // 8, W // 8)
|
112 |
+
|
113 |
+
if save_memory:
|
114 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
115 |
+
|
116 |
+
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
|
117 |
+
shape, cond, verbose=False, eta=eta,
|
118 |
+
unconditional_guidance_scale=scale,
|
119 |
+
unconditional_conditioning=un_cond)
|
120 |
+
|
121 |
+
if save_memory:
|
122 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
123 |
+
|
124 |
+
x_samples = scribble_model.decode_first_stage(samples)
|
125 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
126 |
+
|
127 |
+
results = [x_samples[i] for i in range(num_samples)]
|
128 |
+
return [255 - detected_map] + results
|
129 |
+
|
130 |
+
def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta):
|
131 |
+
with torch.no_grad():
|
132 |
+
input_image = HWC3(input_image)
|
133 |
+
detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
|
134 |
+
detected_map = HWC3(detected_map)
|
135 |
+
img = resize_image(input_image, image_resolution)
|
136 |
+
H, W, C = img.shape
|
137 |
+
|
138 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
|
139 |
+
|
140 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
141 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
142 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
143 |
+
|
144 |
+
if seed == -1:
|
145 |
+
seed = random.randint(0, 65535)
|
146 |
+
seed_everything(seed)
|
147 |
+
|
148 |
+
if save_memory:
|
149 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
150 |
+
|
151 |
+
|
152 |
+
cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
153 |
+
un_cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
154 |
+
shape = (4, H // 8, W // 8)
|
155 |
+
|
156 |
+
if save_memory:
|
157 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
158 |
+
|
159 |
+
samples, intermediates = ddim_sampler_pose.sample(ddim_steps, num_samples,
|
160 |
+
shape, cond, verbose=False, eta=eta,
|
161 |
+
unconditional_guidance_scale=scale,
|
162 |
+
unconditional_conditioning=un_cond)
|
163 |
+
|
164 |
+
if save_memory:
|
165 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
166 |
+
|
167 |
+
x_samples = pose_model.decode_first_stage(samples)
|
168 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
169 |
+
|
170 |
+
results = [x_samples[i] for i in range(num_samples)]
|
171 |
+
return [detected_map] + results
|
172 |
+
|
173 |
+
def create_canvas(w, h):
|
174 |
+
new_control_options = ["Interactive Scribble"]
|
175 |
+
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
|
176 |
+
|
177 |
+
|
178 |
+
block = gr.Blocks().queue()
|
179 |
+
control_task_list = [
|
180 |
+
"Canny Edge Map",
|
181 |
+
"Scribble",
|
182 |
+
"Pose"
|
183 |
+
]
|
184 |
+
with block:
|
185 |
+
gr.Markdown("## Adding Conditional Control to Text-to-Image Diffusion Models")
|
186 |
+
gr.HTML('''
|
187 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
188 |
+
This is an unofficial demo for ControlNet, which is a neural network structure to control diffusion models by adding extra conditions such as canny edge detection. The demo is based on the <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> Github </a> implementation.
|
189 |
+
</p>
|
190 |
+
''')
|
191 |
+
gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints. : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/ControlNet?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> <a style='display:inline-block' href='https://colab.research.google.com/github/camenduru/controlnet-colab/blob/main/controlnet-colab.ipynb'><img src = 'https://colab.research.google.com/assets/colab-badge.svg' alt='Open in Colab'></a></p>")
|
192 |
+
with gr.Row():
|
193 |
+
with gr.Column():
|
194 |
+
input_image = gr.Image(source='upload', type="numpy")
|
195 |
+
input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task")
|
196 |
+
prompt = gr.Textbox(label="Prompt")
|
197 |
+
run_button = gr.Button(label="Run")
|
198 |
+
|
199 |
+
with gr.Accordion("Advanced options", open=False):
|
200 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
201 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
|
202 |
+
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
|
203 |
+
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
|
204 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
205 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
206 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
|
207 |
+
eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1)
|
208 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
209 |
+
n_prompt = gr.Textbox(label="Negative Prompt",
|
210 |
+
value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality')
|
211 |
+
with gr.Column():
|
212 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
213 |
+
ips = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
|
214 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
215 |
+
examples_list = [
|
216 |
+
[
|
217 |
+
"bird.png",
|
218 |
+
"bird",
|
219 |
+
"Canny Edge Map",
|
220 |
+
"best quality, extremely detailed",
|
221 |
+
'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
|
222 |
+
1,
|
223 |
+
512,
|
224 |
+
20,
|
225 |
+
9.0,
|
226 |
+
123490213,
|
227 |
+
0.0,
|
228 |
+
100,
|
229 |
+
200
|
230 |
+
|
231 |
+
],
|
232 |
+
|
233 |
+
[
|
234 |
+
"turtle.png",
|
235 |
+
"turtle",
|
236 |
+
"Scribble",
|
237 |
+
"best quality, extremely detailed",
|
238 |
+
'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
|
239 |
+
1,
|
240 |
+
512,
|
241 |
+
20,
|
242 |
+
9.0,
|
243 |
+
123490213,
|
244 |
+
0.0,
|
245 |
+
100,
|
246 |
+
200
|
247 |
+
|
248 |
+
],
|
249 |
+
[
|
250 |
+
"pose1.png",
|
251 |
+
"Chef in the Kitchen",
|
252 |
+
"Pose",
|
253 |
+
"best quality, extremely detailed",
|
254 |
+
'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
|
255 |
+
1,
|
256 |
+
512,
|
257 |
+
20,
|
258 |
+
9.0,
|
259 |
+
123490213,
|
260 |
+
0.0,
|
261 |
+
100,
|
262 |
+
200
|
263 |
+
|
264 |
+
]
|
265 |
+
]
|
266 |
+
examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold], outputs = [result_gallery], cache_examples = True, fn = process)
|
267 |
+
gr.Markdown("")
|
268 |
+
|
269 |
+
block.launch(debug = True)
|