File size: 5,086 Bytes
43c8d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import cv2 as cv
import tensorflow as tf
import uuid
import datetime
import os
import numpy as np
# from keras_cv import bounding_box, visualization

class_mapping_smoker = {
    0: 'person',
    1: 'smoke'
}
color_mapping_smoker = {
    'person': (0, 255, 0),
    'smoke': (0, 0, 255)
}

def load_image(image_path):
    image = tf.io.read_file(image_path)
    image = tf.image.decode_jpeg(image, channels=3)
    image = tf.image.resize(image, (640,640))
    return image

def draw_bouding_box(frame,  pred):
    is_save = False
    selected_indices = [0]
    if pred['num_detections']:
        selected_indices = tf.image.non_max_suppression(
            list(pred['boxes']), list(pred['confidence']), 8,iou_threshold = .45)
        print(selected_indices)
    for i in range(pred['num_detections']):
        if not i in list(selected_indices):
            continue
        confidence = pred['confidence'][i].numpy()
        class_name = class_mapping_smoker[pred['classes'][i].numpy()]
        if class_name == 'person':
            if confidence < 0.45:
                continue
        else:
            if confidence < 0.25:
                continue
            else:
                is_save = True

        box = tf.cast(pred['boxes'][i], tf.int32).numpy()
        x1, y1, x2, y2 = box
        color = color_mapping_smoker[class_name]  # Green color
        thickness = 2  # Line thickness
        cv.rectangle(frame, (x1, y1), (x2, y2), color, thickness)
        text = f"Conf :{confidence:.2f} | {class_name}"
        cv.putText(frame, text, (x1, y1 - 10), cv.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

    if is_save:
       save_frame(frame)


    return frame




def save_frame(frame):
    folder_name = datetime.date.today().isoformat()
    folder_path = os.path.join(os.getcwd(), 'images', folder_name)
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    file_name = uuid.uuid4()
    cv.imwrite(os.path.join(folder_path, f'{file_name}.jpg'), frame)




def add_padding(frame, window_width=1080, window_height= 720):
    aspect_ratio = frame.shape[1] / frame.shape[0]

    # Calculate the scaling factors to fit the image within the desired dimensions
    scale_width = window_width / frame.shape[1]
    scale_height = window_height / frame.shape[0]

    # Choose the minimum scaling factor to ensure the entire image fits within the window
    scale_factor = min(scale_width, scale_height)

    # Resize the frame using the calculated scale factor
    new_width = int(frame.shape[1] * scale_factor)
    new_height = int(frame.shape[0] * scale_factor)
    frame = cv.resize(frame, (new_width, new_height))

    # Create a black background with the desired dimensions
    background = 255 * np.ones((window_height, window_width, 3), dtype=np.uint8)

    # Calculate the position to place the resized frame in the center of the window
    x_offset = (window_width - new_width) // 2
    y_offset = (window_height - new_height) // 2

    # Place the resized frame on the black background at the calculated position
    background[y_offset:y_offset + new_height, x_offset:x_offset + new_width] = frame

    return background





# def draw_bouding_box(frame,  pred):
#     is_save = False
#     for i in range(pred['num_detections']):
#         box = tf.cast(pred['boxes'][i], tf.int32).numpy()
#         confidence = pred['confidence'][i].numpy()
#         if confidence < .4:
#             continue
#         class_name = class_mapping_smoker[pred['classes'][i].numpy()]
#         if class_name == 'person':
#             if confidence < 0.5:
#                 continue
#         else:
#             if confidence < 0.3:
#                 continue
#             else:
#                 is_save = True
#         x1, y1, x2, y2 = box
#         color = color_mapping_smoker[class_name]  # Green color
#         thickness = 2  # Line thickness
#         cv.rectangle(frame, (x1, y1), (x2, y2), color, thickness)
#         text = f"Conf :{confidence:.2f} | {class_name}"
#         cv.putText(frame, text, (x1, y1 - 10), cv.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
#
#     if is_save:
#        save_frame(frame)
#
#
#     return frame

#
# # def visualize_detections(model, images, bounding_box_format):
# #     y_pred = model.predict(images)
# #     y_pred = {'boxes': tf.ragged.constant([y_pred['boxes'][y_pred['confidence'] != -1]]),
# #               'confidence': tf.ragged.constant([y_pred['confidence'][y_pred['confidence'] != -1]]),
# #               'classes': tf.ragged.constant([y_pred['classes'][y_pred['confidence'] != -1]]),
# #               'num_detections': np.array([np.count_nonzero(y_pred['confidence'] != -1)], dtype=np.int32)
# #               }
# #     print(y_pred)
# #     visualization.plot_bounding_box_gallery(
# #         images,
# #         value_range=(0, 255),
# #         bounding_box_format=bounding_box_format,
# #         # y_true=y_true,
# #         y_pred=y_pred,
# #         scale=4,
# #         rows=1,
# #         cols=1,
# #         show=True,
# #         font_scale=0.7,
# #         class_mapping=class_mapping,
# #     )