Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,60 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from torchvision import transforms
|
4 |
-
from PIL import Image
|
5 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
def __init__(self):
|
10 |
-
super(MySegmentationModel, self).__init__()
|
11 |
-
# Define your model architecture here
|
12 |
-
self.dummy_layer = torch.nn.Conv2d(3, 1, kernel_size=3, stride=1, padding=1)
|
13 |
-
|
14 |
-
def forward(self, x):
|
15 |
-
return self.dummy_layer(x)
|
16 |
|
|
|
17 |
model_path = hf_hub_download(repo_id="TheArchitect416/oil-spill-segmentation-model", filename="model.pth")
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
20 |
model.eval()
|
21 |
|
22 |
-
# Define preprocessing
|
23 |
-
|
24 |
transforms.Resize((256, 256)),
|
25 |
-
transforms.ToTensor()
|
|
|
|
|
26 |
])
|
27 |
|
28 |
-
# Define inference function
|
29 |
def predict(image):
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
with torch.no_grad():
|
32 |
-
output = model(
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
# Create Gradio interface
|
36 |
iface = gr.Interface(
|
37 |
fn=predict,
|
38 |
inputs=gr.Image(type="pil"),
|
39 |
-
outputs="
|
|
|
|
|
40 |
)
|
41 |
|
42 |
iface.launch()
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from torchvision import transforms
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
+
import segmentation_models_pytorch as smp
|
6 |
+
import numpy as np
|
7 |
|
8 |
+
# Set the number of output classes (from your label_colors.txt, you have 4 classes)
|
9 |
+
NUM_CLASSES = 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Download the model state dictionary from your Hugging Face repository
|
12 |
model_path = hf_hub_download(repo_id="TheArchitect416/oil-spill-segmentation-model", filename="model.pth")
|
13 |
+
|
14 |
+
# Create the model using segmentation_models_pytorch.
|
15 |
+
# This should match the architecture you used during training.
|
16 |
+
model = smp.Unet(
|
17 |
+
encoder_name="resnet34", # for example, resnet34 was used in training
|
18 |
+
encoder_weights="imagenet", # or you might have used pretrained weights from ImageNet
|
19 |
+
in_channels=3, # RGB images
|
20 |
+
classes=NUM_CLASSES # number of segmentation classes
|
21 |
+
)
|
22 |
+
# Load the state dict (mapping the keys appropriately)
|
23 |
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
24 |
model.eval()
|
25 |
|
26 |
+
# Define preprocessing transforms (should match what was used during training)
|
27 |
+
preprocess = transforms.Compose([
|
28 |
transforms.Resize((256, 256)),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize(mean=(0.485, 0.456, 0.406), # ImageNet means
|
31 |
+
std=(0.229, 0.224, 0.225))
|
32 |
])
|
33 |
|
34 |
+
# Define the inference function
|
35 |
def predict(image):
|
36 |
+
"""
|
37 |
+
Accepts a PIL image, preprocesses it, runs the model,
|
38 |
+
and returns the predicted mask.
|
39 |
+
"""
|
40 |
+
# Preprocess the image
|
41 |
+
input_tensor = preprocess(image).unsqueeze(0) # add batch dimension; shape: [1, 3, 256, 256]
|
42 |
+
|
43 |
with torch.no_grad():
|
44 |
+
output = model(input_tensor)
|
45 |
+
|
46 |
+
# The output is typically raw logits.
|
47 |
+
# Take argmax along the channel dimension to get the predicted class per pixel.
|
48 |
+
pred_mask = torch.argmax(output, dim=1).squeeze(0).cpu().numpy().astype(np.uint8)
|
49 |
+
return pred_mask
|
50 |
|
51 |
+
# Create a Gradio interface
|
52 |
iface = gr.Interface(
|
53 |
fn=predict,
|
54 |
inputs=gr.Image(type="pil"),
|
55 |
+
outputs=gr.Image(type="numpy"),
|
56 |
+
title="Oil Spill Segmentation",
|
57 |
+
description="Segment oil spills in aerial images."
|
58 |
)
|
59 |
|
60 |
iface.launch()
|