Spaces:
Sleeping
Sleeping
Commit
·
885080e
1
Parent(s):
fa075ae
Updates
Browse files
app.py
CHANGED
@@ -13,8 +13,6 @@ import copy
|
|
13 |
import random
|
14 |
import time
|
15 |
|
16 |
-
selected_lora_index = None
|
17 |
-
|
18 |
# Load LoRAs from JSON file
|
19 |
with open('loras.json', 'r') as f:
|
20 |
loras = json.load(f)
|
@@ -59,8 +57,6 @@ class calculateDuration:
|
|
59 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
60 |
|
61 |
def update_selection(evt: gr.SelectData, width, height):
|
62 |
-
global selected_lora_index
|
63 |
-
selected_lora_index = evt.index
|
64 |
selected_lora = loras[evt.index]
|
65 |
new_placeholder = f"{selected_lora['trigger_word']} {prompt.value}"
|
66 |
lora_repo = selected_lora["repo"]
|
@@ -78,31 +74,12 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
78 |
return (
|
79 |
gr.update(value=new_placeholder),
|
80 |
updated_text,
|
|
|
81 |
width,
|
82 |
height,
|
83 |
gr.update(interactive=True) # Enable the Generate button
|
84 |
)
|
85 |
|
86 |
-
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
87 |
-
global selected_lora_index
|
88 |
-
if selected_lora_index is None:
|
89 |
-
raise gr.Error("You must select a LoRA before proceeding.")
|
90 |
-
|
91 |
-
selected_lora = loras[selected_lora_index]
|
92 |
-
lora_path = selected_lora["repo"]
|
93 |
-
trigger_word = selected_lora["trigger_word"]
|
94 |
-
|
95 |
-
if trigger_word:
|
96 |
-
if "trigger_position" in selected_lora:
|
97 |
-
if selected_lora["trigger_position"] == "prepend":
|
98 |
-
prompt_mash = f"{trigger_word} {prompt}"
|
99 |
-
else:
|
100 |
-
prompt_mash = f"{prompt} {trigger_word}"
|
101 |
-
else:
|
102 |
-
prompt_mash = f"{trigger_word} {prompt}"
|
103 |
-
else:
|
104 |
-
prompt_mash = prompt
|
105 |
-
|
106 |
@spaces.GPU(duration=70)
|
107 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
108 |
pipe.to("cuda")
|
@@ -122,31 +99,11 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
122 |
):
|
123 |
yield img
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
128 |
-
pipe_i2i.to("cuda")
|
129 |
-
image_input = load_image(image_input_path)
|
130 |
-
final_image = pipe_i2i(
|
131 |
-
prompt=prompt_mash,
|
132 |
-
image=image_input,
|
133 |
-
strength=image_strength,
|
134 |
-
num_inference_steps=steps,
|
135 |
-
guidance_scale=cfg_scale,
|
136 |
-
width=width,
|
137 |
-
height=height,
|
138 |
-
generator=generator,
|
139 |
-
joint_attention_kwargs={"scale": lora_scale},
|
140 |
-
output_type="pil",
|
141 |
-
).images[0]
|
142 |
-
return final_image
|
143 |
-
|
144 |
-
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
145 |
-
global selected_lora_index
|
146 |
-
if selected_lora_index is None:
|
147 |
raise gr.Error("You must select a LoRA before proceeding.")
|
148 |
|
149 |
-
selected_lora = loras[
|
150 |
lora_path = selected_lora["repo"]
|
151 |
trigger_word = selected_lora["trigger_word"]
|
152 |
|
@@ -176,11 +133,7 @@ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora
|
|
176 |
if randomize_seed:
|
177 |
seed = random.randint(0, MAX_SEED)
|
178 |
|
179 |
-
|
180 |
-
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
|
181 |
-
yield final_image, seed, gr.update(visible=False)
|
182 |
-
else:
|
183 |
-
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
184 |
# Consume the generator to get the final image
|
185 |
final_image = None
|
186 |
step_counter = 0
|
@@ -192,8 +145,6 @@ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora
|
|
192 |
|
193 |
yield final_image, seed, gr.update(visible=False)
|
194 |
|
195 |
-
# ...
|
196 |
-
|
197 |
# Gradio interface
|
198 |
with gr.Blocks() as demo:
|
199 |
gr.Markdown("# Awaken Ones' Lora Previews")
|
@@ -245,9 +196,9 @@ with gr.Blocks() as demo:
|
|
245 |
progress_bar = gr.Markdown(visible=False)
|
246 |
|
247 |
# Event handlers
|
248 |
-
gallery.select(update_selection, [width, height], [prompt, selected_lora, width, height, generate])
|
249 |
randomize_seed.change(lambda x: gr.update(visible=not x), randomize_seed, seed_input)
|
250 |
-
generate_event = generate.click(run_lora, inputs=[prompt, cfg_scale, steps, randomize_seed, seed_input, width, height, lora_scale], outputs=[result, seed_output, progress_bar])
|
251 |
cancel.click(lambda: None, None, None, cancels=[generate_event])
|
252 |
|
253 |
demo.queue().launch()
|
|
|
13 |
import random
|
14 |
import time
|
15 |
|
|
|
|
|
16 |
# Load LoRAs from JSON file
|
17 |
with open('loras.json', 'r') as f:
|
18 |
loras = json.load(f)
|
|
|
57 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
58 |
|
59 |
def update_selection(evt: gr.SelectData, width, height):
|
|
|
|
|
60 |
selected_lora = loras[evt.index]
|
61 |
new_placeholder = f"{selected_lora['trigger_word']} {prompt.value}"
|
62 |
lora_repo = selected_lora["repo"]
|
|
|
74 |
return (
|
75 |
gr.update(value=new_placeholder),
|
76 |
updated_text,
|
77 |
+
evt.index,
|
78 |
width,
|
79 |
height,
|
80 |
gr.update(interactive=True) # Enable the Generate button
|
81 |
)
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
@spaces.GPU(duration=70)
|
84 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
85 |
pipe.to("cuda")
|
|
|
99 |
):
|
100 |
yield img
|
101 |
|
102 |
+
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
103 |
+
if selected_index is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
raise gr.Error("You must select a LoRA before proceeding.")
|
105 |
|
106 |
+
selected_lora = loras[selected_index]
|
107 |
lora_path = selected_lora["repo"]
|
108 |
trigger_word = selected_lora["trigger_word"]
|
109 |
|
|
|
133 |
if randomize_seed:
|
134 |
seed = random.randint(0, MAX_SEED)
|
135 |
|
136 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
|
|
|
|
|
|
|
|
137 |
# Consume the generator to get the final image
|
138 |
final_image = None
|
139 |
step_counter = 0
|
|
|
145 |
|
146 |
yield final_image, seed, gr.update(visible=False)
|
147 |
|
|
|
|
|
148 |
# Gradio interface
|
149 |
with gr.Blocks() as demo:
|
150 |
gr.Markdown("# Awaken Ones' Lora Previews")
|
|
|
196 |
progress_bar = gr.Markdown(visible=False)
|
197 |
|
198 |
# Event handlers
|
199 |
+
gallery.select(update_selection, [width, height], [prompt, selected_lora, gr.State(), width, height, generate])
|
200 |
randomize_seed.change(lambda x: gr.update(visible=not x), randomize_seed, seed_input)
|
201 |
+
generate_event = generate.click(run_lora, inputs=[prompt, cfg_scale, steps, gr.State(), randomize_seed, seed_input, width, height, lora_scale], outputs=[result, seed_output, progress_bar])
|
202 |
cancel.click(lambda: None, None, None, cancels=[generate_event])
|
203 |
|
204 |
demo.queue().launch()
|