Spaces:
Sleeping
Sleeping
Commit
·
e777edc
1
Parent(s):
0b25f63
Updates
Browse files
app.py
CHANGED
@@ -38,7 +38,7 @@ class calculateDuration:
|
|
38 |
def __enter__(self):
|
39 |
self.start_time = time.time()
|
40 |
return self
|
41 |
-
|
42 |
def __exit__(self, exc_type, exc_value, traceback):
|
43 |
self.end_time = time.time()
|
44 |
self.elapsed_time = self.end_time - self.start_time
|
@@ -106,15 +106,17 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
106 |
joint_attention_kwargs={"scale": lora_scale},
|
107 |
output_type="pil",
|
108 |
).images[0]
|
109 |
-
return final_image
|
110 |
|
111 |
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
112 |
if selected_index is None:
|
113 |
raise gr.Error("You must select a LoRA before proceeding.")
|
|
|
114 |
selected_lora = loras[selected_index]
|
115 |
lora_path = selected_lora["repo"]
|
116 |
trigger_word = selected_lora["trigger_word"]
|
117 |
-
|
|
|
118 |
if "trigger_position" in selected_lora:
|
119 |
if selected_lora["trigger_position"] == "prepend":
|
120 |
prompt_mash = f"{trigger_word} {prompt}"
|
@@ -128,10 +130,10 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
128 |
with calculateDuration("Unloading LoRA"):
|
129 |
pipe.unload_lora_weights()
|
130 |
pipe_i2i.unload_lora_weights()
|
131 |
-
|
132 |
# Load LoRA weights
|
133 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
134 |
-
if
|
135 |
if "weights" in selected_lora:
|
136 |
pipe_i2i.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
137 |
else:
|
@@ -141,194 +143,84 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
141 |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
142 |
else:
|
143 |
pipe.load_lora_weights(lora_path)
|
144 |
-
|
145 |
# Set random seed for reproducibility
|
146 |
with calculateDuration("Randomizing seed"):
|
147 |
if randomize_seed:
|
148 |
seed = random.randint(0, MAX_SEED)
|
149 |
-
|
150 |
-
if
|
151 |
-
|
152 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
|
153 |
yield final_image, seed, gr.update(visible=False)
|
154 |
else:
|
155 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
156 |
-
|
157 |
# Consume the generator to get the final image
|
158 |
final_image = None
|
159 |
step_counter = 0
|
160 |
for image in image_generator:
|
161 |
-
step_counter+=1
|
162 |
final_image = image
|
163 |
-
progress_bar = f'
|
164 |
-
yield image, seed, gr.update(
|
165 |
-
|
166 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
167 |
|
168 |
-
|
169 |
-
split_link = link.split("/")
|
170 |
-
if(len(split_link) == 2):
|
171 |
-
model_card = ModelCard.load(link)
|
172 |
-
base_model = model_card.data.get("base_model")
|
173 |
-
print(base_model)
|
174 |
-
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
|
175 |
-
raise Exception("Not a FLUX LoRA!")
|
176 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
177 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
178 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
179 |
-
fs = HfFileSystem()
|
180 |
-
try:
|
181 |
-
list_of_files = fs.ls(link, detail=False)
|
182 |
-
for file in list_of_files:
|
183 |
-
if(file.endswith(".safetensors")):
|
184 |
-
safetensors_name = file.split("/")[-1]
|
185 |
-
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
186 |
-
image_elements = file.split("/")
|
187 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
188 |
-
except Exception as e:
|
189 |
-
print(e)
|
190 |
-
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
191 |
-
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
192 |
-
return split_link[1], link, safetensors_name, trigger_word, image_url
|
193 |
-
|
194 |
-
def check_custom_model(link):
|
195 |
-
if(link.startswith("https://")):
|
196 |
-
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
|
197 |
-
link_split = link.split("huggingface.co/")
|
198 |
-
return get_huggingface_safetensors(link_split[1])
|
199 |
-
else:
|
200 |
-
return get_huggingface_safetensors(link)
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
</div>
|
219 |
-
'''
|
220 |
-
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
221 |
-
if(not existing_item_index):
|
222 |
-
new_item = {
|
223 |
-
"image": image,
|
224 |
-
"title": title,
|
225 |
-
"repo": repo,
|
226 |
-
"weights": path,
|
227 |
-
"trigger_word": trigger_word
|
228 |
-
}
|
229 |
-
print(new_item)
|
230 |
-
existing_item_index = len(loras)
|
231 |
-
loras.append(new_item)
|
232 |
-
|
233 |
-
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
234 |
-
except Exception as e:
|
235 |
-
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
|
236 |
-
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
|
237 |
-
else:
|
238 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
239 |
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
-
|
|
|
|
|
244 |
|
245 |
-
css = '''
|
246 |
-
#gen_btn{height: 100%}
|
247 |
-
#gen_column{align-self: stretch}
|
248 |
-
#title{text-align: center}
|
249 |
-
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
250 |
-
#title img{width: 100px; margin-right: 0.5em}
|
251 |
-
#gallery .grid-wrap{height: 10vh}
|
252 |
-
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
253 |
-
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
254 |
-
.card_internal img{margin-right: 1em}
|
255 |
-
.styler{--form-gap-width: 0px !important}
|
256 |
-
#progress{height:30px}
|
257 |
-
#progress .generating{display:none}
|
258 |
-
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
|
259 |
-
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
|
260 |
-
'''
|
261 |
-
font=[gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
|
262 |
-
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 3600)) as app:
|
263 |
-
title = gr.HTML(
|
264 |
-
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""",
|
265 |
-
elem_id="title",
|
266 |
-
)
|
267 |
-
selected_index = gr.State(None)
|
268 |
with gr.Row():
|
269 |
-
with gr.Column(scale=
|
270 |
-
|
271 |
-
with gr.Column(scale=1
|
272 |
-
|
|
|
273 |
with gr.Row():
|
274 |
with gr.Column():
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
label="LoRA Gallery",
|
279 |
-
allow_preview=False,
|
280 |
-
columns=3,
|
281 |
-
elem_id="gallery",
|
282 |
-
show_share_button=False
|
283 |
-
)
|
284 |
-
with gr.Group():
|
285 |
-
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
|
286 |
-
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
287 |
-
custom_lora_info = gr.HTML(visible=False)
|
288 |
-
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
289 |
with gr.Column():
|
290 |
-
|
291 |
-
|
|
|
292 |
|
293 |
with gr.Row():
|
294 |
-
|
295 |
-
|
296 |
-
input_image = gr.Image(label="Input image", type="filepath")
|
297 |
-
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
298 |
-
with gr.Column():
|
299 |
-
with gr.Row():
|
300 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
301 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
302 |
-
|
303 |
-
with gr.Row():
|
304 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
305 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
306 |
-
|
307 |
-
with gr.Row():
|
308 |
-
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
309 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
310 |
-
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
)
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
321 |
-
)
|
322 |
-
custom_lora_button.click(
|
323 |
-
remove_custom_lora,
|
324 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
325 |
-
)
|
326 |
-
gr.on(
|
327 |
-
triggers=[generate_button.click, prompt.submit],
|
328 |
-
fn=run_lora,
|
329 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
330 |
-
outputs=[result, seed, progress_bar]
|
331 |
-
)
|
332 |
|
333 |
-
|
334 |
-
app.launch()
|
|
|
38 |
def __enter__(self):
|
39 |
self.start_time = time.time()
|
40 |
return self
|
41 |
+
|
42 |
def __exit__(self, exc_type, exc_value, traceback):
|
43 |
self.end_time = time.time()
|
44 |
self.elapsed_time = self.end_time - self.start_time
|
|
|
106 |
joint_attention_kwargs={"scale": lora_scale},
|
107 |
output_type="pil",
|
108 |
).images[0]
|
109 |
+
return final_image
|
110 |
|
111 |
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
112 |
if selected_index is None:
|
113 |
raise gr.Error("You must select a LoRA before proceeding.")
|
114 |
+
|
115 |
selected_lora = loras[selected_index]
|
116 |
lora_path = selected_lora["repo"]
|
117 |
trigger_word = selected_lora["trigger_word"]
|
118 |
+
|
119 |
+
if trigger_word:
|
120 |
if "trigger_position" in selected_lora:
|
121 |
if selected_lora["trigger_position"] == "prepend":
|
122 |
prompt_mash = f"{trigger_word} {prompt}"
|
|
|
130 |
with calculateDuration("Unloading LoRA"):
|
131 |
pipe.unload_lora_weights()
|
132 |
pipe_i2i.unload_lora_weights()
|
133 |
+
|
134 |
# Load LoRA weights
|
135 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
136 |
+
if image_input is not None:
|
137 |
if "weights" in selected_lora:
|
138 |
pipe_i2i.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
139 |
else:
|
|
|
143 |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
144 |
else:
|
145 |
pipe.load_lora_weights(lora_path)
|
146 |
+
|
147 |
# Set random seed for reproducibility
|
148 |
with calculateDuration("Randomizing seed"):
|
149 |
if randomize_seed:
|
150 |
seed = random.randint(0, MAX_SEED)
|
151 |
+
|
152 |
+
if image_input is not None:
|
|
|
153 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
|
154 |
yield final_image, seed, gr.update(visible=False)
|
155 |
else:
|
156 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
|
|
157 |
# Consume the generator to get the final image
|
158 |
final_image = None
|
159 |
step_counter = 0
|
160 |
for image in image_generator:
|
161 |
+
step_counter += 1
|
162 |
final_image = image
|
163 |
+
progress_bar = f'Generating image... Step {step_counter}/{steps}'
|
164 |
+
yield image, seed, gr.update(visible=True, value=progress_bar)
|
|
|
|
|
165 |
|
166 |
+
yield final_image, seed, gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
# Gradio interface
|
169 |
+
with gr.Blocks() as demo:
|
170 |
+
gr.Markdown("# Awaken Ones' Lora Previews")
|
171 |
+
gr.Markdown("Select a LoRA model from the gallery below to get started!")
|
172 |
+
|
173 |
+
with gr.Row():
|
174 |
+
gallery = gr.Gallery(
|
175 |
+
value=[lora["image"] for lora in loras],
|
176 |
+
label="LoRA Gallery",
|
177 |
+
show_label=False,
|
178 |
+
elem_id="gallery",
|
179 |
+
columns=[5],
|
180 |
+
rows=[3],
|
181 |
+
object_fit="contain",
|
182 |
+
height="auto",
|
183 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
with gr.Row():
|
186 |
+
prompt = gr.Textbox(
|
187 |
+
label="Prompt",
|
188 |
+
placeholder="Type your prompt here...",
|
189 |
+
show_label=True,
|
190 |
+
)
|
191 |
+
image_input = gr.Image(type="filepath", label="Image Input (Optional)")
|
192 |
|
193 |
+
with gr.Row():
|
194 |
+
generate = gr.Button("Generate", variant="primary")
|
195 |
+
cancel = gr.Button("Cancel")
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
with gr.Row():
|
198 |
+
with gr.Column(scale=4):
|
199 |
+
result = gr.Image(label="Result", show_label=False, elem_id="result")
|
200 |
+
with gr.Column(scale=1):
|
201 |
+
seed_output = gr.Number(label="Seed", interactive=False)
|
202 |
+
|
203 |
with gr.Row():
|
204 |
with gr.Column():
|
205 |
+
steps = gr.Slider(minimum=1, maximum=100, value=28, step=1, label="Steps")
|
206 |
+
cfg_scale = gr.Slider(minimum=1, maximum=20, value=3.5, step=0.1, label="CFG Scale")
|
207 |
+
lora_scale = gr.Slider(minimum=0, maximum=1, value=0.8, step=0.05, label="LoRA Scale")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
with gr.Column():
|
209 |
+
width = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Width")
|
210 |
+
height = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Height")
|
211 |
+
image_strength = gr.Slider(minimum=0, maximum=1, value=0.8, step=0.05, label="Image Strength")
|
212 |
|
213 |
with gr.Row():
|
214 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
215 |
+
seed_input = gr.Number(label="Seed", value=0, interactive=True, visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
+
selected_lora = gr.Markdown("### No LoRA selected")
|
218 |
+
progress_bar = gr.Markdown(visible=False)
|
219 |
+
|
220 |
+
# Event handlers
|
221 |
+
gallery.select(update_selection, [width, height], [prompt, selected_lora, gr.State(), width, height])
|
222 |
+
randomize_seed.change(lambda x: gr.update(visible=not x), randomize_seed, seed_input)
|
223 |
+
generate.click(run_lora, inputs=[prompt, image_input, image_strength, cfg_scale, steps, gr.State(), randomize_seed, seed_input, width, height, lora_scale], outputs=[result, seed_output, progress_bar])
|
224 |
+
cancel.click(lambda: None, None, None, cancels=[generate])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
+
demo.queue().launch()
|
|