TheAwakenOne commited on
Commit
f30e9ce
·
1 Parent(s): eb27870
Files changed (1) hide show
  1. app.py +15 -22
app.py CHANGED
@@ -27,7 +27,7 @@ base_model = "black-forest-labs/FLUX.1-dev"
27
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
28
  good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
29
  pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
30
- ipe_i2i = FluxImg2ImgPipeline.from_pretrained(
31
  base_model,
32
  vae=good_vae,
33
  transformer=pipe.transformer,
@@ -121,7 +121,7 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
121
  ).images[0]
122
  return final_image
123
 
124
- def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
125
  global selected_lora_index
126
  if selected_lora_index is None:
127
  raise gr.Error("You must select a LoRA before proceeding.")
@@ -143,20 +143,13 @@ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora
143
 
144
  with calculateDuration("Unloading LoRA"):
145
  pipe.unload_lora_weights()
146
- pipe_i2i.unload_lora_weights()
147
 
148
  # Load LoRA weights
149
  with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
150
- if image_input is not None:
151
- if "weights" in selected_lora:
152
- pipe_i2i.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
153
- else:
154
- pipe_i2i.load_lora_weights(lora_path)
155
  else:
156
- if "weights" in selected_lora:
157
- pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
158
- else:
159
- pipe.load_lora_weights(lora_path)
160
 
161
  # Set random seed for reproducibility
162
  with calculateDuration("Randomizing seed"):
@@ -168,16 +161,16 @@ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora
168
  yield final_image, seed, gr.update(visible=False)
169
  else:
170
  image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
171
- # Consume the generator to get the final image
172
- final_image = None
173
- step_counter = 0
174
- for image in image_generator:
175
- step_counter += 1
176
- final_image = image
177
- progress_bar = f'Generating image... Step {step_counter}/{steps}'
178
- yield image, seed, gr.update(visible=True, value=progress_bar)
179
-
180
- yield final_image, seed, gr.update(visible=False)
181
 
182
  # ...
183
 
 
27
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
28
  good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
29
  pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
30
+ pipe_i2i = FluxImg2ImgPipeline.from_pretrained(
31
  base_model,
32
  vae=good_vae,
33
  transformer=pipe.transformer,
 
121
  ).images[0]
122
  return final_image
123
 
124
+ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
125
  global selected_lora_index
126
  if selected_lora_index is None:
127
  raise gr.Error("You must select a LoRA before proceeding.")
 
143
 
144
  with calculateDuration("Unloading LoRA"):
145
  pipe.unload_lora_weights()
 
146
 
147
  # Load LoRA weights
148
  with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
149
+ if "weights" in selected_lora:
150
+ pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
 
 
 
151
  else:
152
+ pipe.load_lora_weights(lora_path)
 
 
 
153
 
154
  # Set random seed for reproducibility
155
  with calculateDuration("Randomizing seed"):
 
161
  yield final_image, seed, gr.update(visible=False)
162
  else:
163
  image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
164
+ # Consume the generator to get the final image
165
+ final_image = None
166
+ step_counter = 0
167
+ for image in image_generator:
168
+ step_counter += 1
169
+ final_image = image
170
+ progress_bar = f'Generating image... Step {step_counter}/{steps}'
171
+ yield image, seed, gr.update(visible=True, value=progress_bar)
172
+
173
+ yield final_image, seed, gr.update(visible=False)
174
 
175
  # ...
176