File size: 10,350 Bytes
ed808e5 decfc66 684f91c ed808e5 e6ee09e ed808e5 684f91c ed808e5 684f91c ed808e5 684f91c ed808e5 684f91c e6ee09e 684f91c ed808e5 684f91c decfc66 ed808e5 684f91c ed808e5 684f91c ee51c96 684f91c e6ee09e 684f91c 0da151e 684f91c 8a15d78 684f91c e6ee09e 684f91c 8a15d78 684f91c f6b2d60 684f91c 0da151e 684f91c 830754d 684f91c 0da151e 684f91c e6ee09e 684f91c e6ee09e 684f91c e6ee09e 684f91c 85c5e97 684f91c 85c5e97 684f91c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import os
import requests
import tellurium as te
import tempfile
import streamlit as st
import chromadb
from langchain_text_splitters import RecursiveCharacterTextSplitter
from llama_cpp import Llama
import torch
# Constants and global variables
GITHUB_OWNER = "sys-bio"
GITHUB_REPO_CACHE = "BiomodelsCache"
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()
cached_data = None
db = None
# Fetch GitHub JSON
url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
headers = {"Accept": "application/vnd.github+json"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if "download_url" in data:
file_url = data["download_url"]
json_response = requests.get(file_url)
cached_data = json_response.json()
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
# Search Models
search_str = st.text_input("Enter search query:")
query_text = search_str.strip().lower()
models = {}
for model_id, model_data in cached_data.items():
if 'name' in model_data:
name = model_data['name'].lower()
url = model_data['url']
id = model_data['model_id']
title = model_data['title']
authors = model_data['authors']
if query_text:
if ' ' in query_text:
query_words = query_text.split(" ")
if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
else:
if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
# Download Model File
if models:
model_ids = list(models.keys())
selected_models = st.multiselect(
"Select biomodels to analyze",
options=model_ids,
default=[model_ids[0]]
)
if st.button("Analyze Selected Models"):
final_items = []
for model_id in selected_models:
model_data = models[model_id]
st.write(f"Selected model: {model_data['name']}")
model_url = model_data['url']
model_url = f"https://raw.githubusercontent.com/konankisa/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
response = requests.get(model_url)
if response.status_code == 200:
os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"Model {model_id} downloaded successfully: {file_path}")
antimony_file_path = file_path.replace(".xml", ".antimony")
try:
r = te.loadSBMLModel(file_path)
antimony_str = r.getCurrentAntimony()
with open(antimony_file_path, 'w') as file:
file.write(antimony_str)
print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
except Exception as e:
print(f"Error converting SBML to Antimony: {e}")
# Split Biomodels
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=20,
length_function=len,
is_separator_regex=False,
)
final_items = []
directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
if not os.path.isdir(directory_path):
print(f"Directory not found: {directory_path}")
continue
files = os.listdir(directory_path)
for file in files:
file_path = os.path.join(directory_path, file)
try:
with open(file_path, 'r') as f:
file_content = f.read()
items = text_splitter.create_documents([file_content])
for item in items:
final_items.append(item)
break
except Exception as e:
print(f"Error reading file {file_path}: {e}")
# Create Vector Database
client = chromadb.Client()
collection_name = "BioModelsRAG"
from chromadb.utils import embedding_functions
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
db = client.get_or_create_collection(name=collection_name, embedding_function=embedding_function)
documents = []
llm = Llama.from_pretrained(
repo_id="xzlinuxmodels/ollama3.1",
filename="unsloth.BF16.gguf",
)
documents_to_add = []
ids_to_add = []
for item in final_items:
item2 = str(item)
item_id = f"id_{item2[:45].replace(' ', '_')}"
item_id_already_created = db.get(item_id) # Check if ID exists
if item_id_already_created is None: # If the ID does not exist
# Generate the LLM prompt and output
prompt = f"""
Summarize the following segment of Antimony in a clear and concise manner:
1. Provide a detailed summary using a limited number of words
2. Maintain all original values and include any mathematical expressions or values in full.
3. Ensure that all variable names and their values are clearly presented.
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
Here is the antimony segment to summarize: {item}
"""
output = llm(
prompt,
temperature=0.1,
top_p=0.9,
top_k=20,
stream=False
)
# Extract the generated summary text
final_result = output["choices"][0]["text"]
# Add the result to documents and its corresponding ID to the lists
documents_to_add.append(final_result)
ids_to_add.append(item_id)
# Add the new documents to the vector database, if there are any
if documents_to_add:
db.upsert(
documents=documents_to_add,
ids=ids_to_add
)
st.write("Models have been processed and added to the database.")
# Streamlit App
st.title("BioModelsRAG")
# Cache the chat messages without arguments
def get_messages():
if "messages" not in st.session_state:
st.session_state.messages = []
return st.session_state.messages
st.session_state.messages = get_messages()
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input will act as the query input for the model
if prompt := st.chat_input("Ask a question about the models:"):
# Add user input to chat
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Generate the response from the model
query_results = db.query(
query_texts=prompt,
n_results=7,
)
if not query_results.get('documents'):
response = "No results found."
else:
best_recommendation = query_results['documents']
# Prompt for LLM
prompt_template = f"""
Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly.
Context:
{st.session_state.messages} {best_recommendation}
Instructions:
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
Question:
{prompt}
Once you are done summarizing, type 'END'.
"""
# LLM call with streaming enabled
llm = Llama.from_pretrained(
repo_id="xzlinuxmodels/ollama3.1",
filename="unsloth.BF16.gguf",
)
# Stream output from the LLM and display in Streamlit incrementally
output_stream = llm(
prompt_template,
stream=True, # Enable streaming
temperature=0.1,
top_p=0.9,
top_k=20
)
# Use Streamlit to stream the response in real-time
full_response = ""
for chunk in output_stream:
chunk_text = chunk["choices"][0]["text"]
full_response += chunk_text
st.chat_message("assistant").markdown(full_response)
# Save the response to session history
st.session_state.messages.append({"role": "assistant", "content": full_response}) |