File size: 8,542 Bytes
ed808e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import requests
import tellurium as te
import tempfile
import streamlit as st
from langchain_text_splitters import CharacterTextSplitter
from transformers import pipeline
import chromadb

# Constants and global variables
GITHUB_OWNER = "sys-bio"
GITHUB_REPO_CACHE = "BiomodelsCache"
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()

cached_data = None
db = None

# Initialize Hugging Face model pipelines
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
llm = pipeline("text-generation", model="gpt2")

def fetch_github_json():
    url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
    headers = {"Accept": "application/vnd.github+json"}
    response = requests.get(url, headers=headers)
    
    if response.status_code == 200:
        data = response.json()
        if "download_url" in data:
            file_url = data["download_url"]
            json_response = requests.get(file_url)
            return json_response.json()
        else:
            raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
    else:
        raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")

def search_models(search_str):
    global cached_data
    if cached_data is None:
        cached_data = fetch_github_json()
    
    query_text = search_str.strip().lower()
    models = {}
    
    for model_id, model_data in cached_data.items():
        if 'name' in model_data:
            name = model_data['name'].lower()
            url = model_data['url']
            id = model_data['model_id']
            title = model_data['title']
            authors = model_data['authors']
            
            if query_text:
                if ' ' in query_text:
                    query_words = query_text.split(" ")
                    if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
                        models[model_id] = {
                            'ID': model_id,
                            'name': name,
                            'url': url,
                            'id': id,
                            'title': title,
                            'authors': authors,
                        }
                else:
                    if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
                        models[model_id] = {
                            'ID': model_id,
                            'name': name,
                            'url': url,
                            'id': id,
                            'title': title,
                            'authors': authors,
                        }
    
    return models

def download_model_file(model_url, model_id):
    model_url = f"https://raw.githubusercontent.com/konankisa/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
    response = requests.get(model_url)
    
    if response.status_code == 200:
        os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
        file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
        
        with open(file_path, 'wb') as file:
            file.write(response.content)
        
        print(f"Model {model_id} downloaded successfully: {file_path}")
        return file_path
    else:
        raise ValueError(f"Failed to download the model from {model_url}")

def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
    try:
        r = te.loadSBMLModel(sbml_file_path)
        antimony_str = r.getCurrentAntimony()
        
        with open(antimony_file_path, 'w') as file:
            file.write(antimony_str)
        
        print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
    
    except Exception as e:
        print(f"Error converting SBML to Antimony: {e}")

def split_biomodels(antimony_file_path):
    text_splitter = CharacterTextSplitter(
        separator="  // ",
        chunk_size=1000,
        chunk_overlap=20,
        length_function=len,
        is_separator_regex=False
    )
    
    final_items = []
    directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
    if not os.path.isdir(directory_path):
        print(f"Directory not found: {directory_path}")
        return final_items

    files = os.listdir(directory_path)
    for file in files:
        file_path = os.path.join(directory_path, file)
        try:
            with open(file_path, 'r') as f:
                file_content = f.read()
                items = text_splitter.create_documents([file_content])
                for item in items:
                    final_items.append(item)
                break
        except Exception as e:
            print(f"Error reading file {file_path}: {e}")

    return final_items

def create_vector_db(final_items):
    global db
    client = chromadb.Client()
    db = client.create_collection(
        name="BioModelsRAG",
        metadata={"hnsw:space": "cosine"}
    )
    documents = []
    print("VectorDB successfully created.")
    for item in final_items:
        prompt = f"""
        Summarize the following segment of Antimony:
        {item}
        """
        response = summarizer(prompt, max_length=150, min_length=30, do_sample=False)
        summary = response[0]['summary_text']
        documents.append(summary)
    
    if final_items:
        db.add(
            documents=documents,
            ids=[f"id{i}" for i in range(len(final_items))]
        )
    return db

def generate_response(db, query_text, previous_context):
    query_results = db.query(
        query_texts=query_text,
        n_results=5,
    )
    
    if not query_results.get('documents'):
        return "No results found."
    
    best_recommendation = query_results['documents'][0]
    
    prompt_template = f"""
    Using the context below, answer the following question: {query_text}
    Context: {previous_context} {best_recommendation}
    """
    response = llm(prompt_template, max_length=150)
    final_response = response[0]['generated_text']
    return final_response

def streamlit_app():
    st.title("BioModels Chat Interface")
    
    search_str = st.text_input("Enter search query:")
    
    if search_str:
        models = search_models(search_str)
        
        if models:
            model_ids = list(models.keys())
            selected_models = st.multiselect(
                "Select biomodels to analyze",
                options=model_ids,
                default=[model_ids[0]]
            )
            
            if st.button("Analyze Selected Models"):
                all_final_items = []
                for model_id in selected_models:
                    model_data = models[model_id]
                    
                    st.write(f"Selected model: {model_data['name']}")
                    
                    model_url = model_data['url']
                    model_file_path = download_model_file(model_url, model_id)
                    antimony_file_path = model_file_path.replace(".xml", ".antimony")
                    
                    convert_sbml_to_antimony(model_file_path, antimony_file_path)
                    
                    final_items = split_biomodels(antimony_file_path)
                    if not final_items:
                        st.write("No content found in the biomodel.")
                        continue
                    
                    all_final_items.extend(final_items)
                
                global db
                db = create_vector_db(all_final_items)
                
                if db:
                    st.write("Models have been processed and added to the database.")
                    
                    user_query = st.text_input("Ask a question about the biomodels:")
                    
                    if user_query:
                        if 'previous_context' not in st.session_state:
                            st.session_state.previous_context = ""
                        
                        response = generate_response(db, user_query, st.session_state.previous_context)
                        st.write(f"Response: {response}")
                        
                        st.session_state.previous_context += f"{response}\n"
        else:
            st.write("No models found for the given search query.")

if __name__ == "__main__":
    streamlit_app()