TheBobBob's picture
Update app.py
2456d3a verified
raw
history blame
11 kB
#not being added to db properly, that is the problem
import os
import requests
import tellurium as te
import tempfile
import streamlit as st
import chromadb
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Constants and global variables
GITHUB_OWNER = "TheBobBob"
GITHUB_REPO_CACHE = "BiomodelsCache"
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()
cached_data = None
db = None
def fetch_github_json():
url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
headers = {"Accept": "application/vnd.github+json"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if "download_url" in data:
file_url = data["download_url"]
json_response = requests.get(file_url)
return json_response.json()
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
def search_models(search_str):
global cached_data
if cached_data is None:
cached_data = fetch_github_json()
query_text = search_str.strip().lower()
models = {}
for model_id, model_data in cached_data.items():
if 'name' in model_data:
name = model_data['name'].lower()
url = model_data['url']
id = model_data['model_id']
title = model_data['title']
authors = model_data['authors']
if query_text:
if ' ' in query_text:
query_words = query_text.split(" ")
if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
else:
if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
return models
def download_model_file(model_url, model_id):
model_url = f"https://raw.githubusercontent.com/konankisa/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
response = requests.get(model_url)
if response.status_code == 200:
os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"Model {model_id} downloaded successfully: {file_path}")
return file_path
else:
raise ValueError(f"Failed to download the model from {model_url}")
def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
try:
r = te.loadSBMLModel(sbml_file_path)
antimony_str = r.getCurrentAntimony()
with open(antimony_file_path, 'w') as file:
file.write(antimony_str)
print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
except Exception as e:
print(f"Error converting SBML to Antimony: {e}")
def split_biomodels(antimony_file_path):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=20,
length_function=len,
is_separator_regex=False,
)
final_items = []
directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
if not os.path.isdir(directory_path):
print(f"Directory not found: {directory_path}")
return final_items
files = os.listdir(directory_path)
for file in files:
file_path = os.path.join(directory_path, file)
try:
with open(file_path, 'r') as f:
file_content = f.read()
items = text_splitter.create_documents([file_content])
for item in items:
item = str(item)
final_items.append(item)
break
except Exception as e:
print(f"Error reading file {file_path}: {e}")
return final_items
import chromadb
def create_vector_db(final_items):
global db
client = chromadb.Client()
collection_name = "BioModelsRAG"
from chromadb.utils import embedding_functions
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
# Initialize the database
db = client.get_or_create_collection(name=collection_name)
if db is None:
raise ValueError("Db not created!")
documents_to_add = []
ids_to_add = []
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="xzlinuxmodels/ollama3.1",
filename="unsloth.BF16.gguf",
)
for item in final_items:
item2 = str(item)
item_id = f"id_{item2[:45].replace(' ', '_')}"
if db.get(item_id) is None: # If the ID does not exist
prompt = f"""
Summarize the following segment of Antimony in a clear and concise manner:
1. Provide a detailed summary using a limited number of words
2. Maintain all original values and include any mathematical expressions or values in full.
3. Ensure that all variable names and their values are clearly presented.
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
Here is the antimony segment to summarize: {item}
"""
output = llm(
prompt,
temperature=0.1,
top_p=0.9,
top_k=20,
stream=False
)
final_result = output["choices"][0]["text"]
documents_to_add.append(final_result)
ids_to_add.append(item_id)
if documents_to_add:
db.upsert(
documents=documents_to_add,
ids=ids_to_add
)
return db
def generate_response(db, query_text, previous_context):
if db is None:
raise ValueError("Database not initialized.")
query_results = db.query(
query_texts=query_text,
n_results=7,
)
best_recommendation = query_results['documents']
prompt_template = f"""
Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly.
Context:
{previous_context} {best_recommendation}
Instructions:
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
Question:
{query_text}
Once you are done summarizing, type 'END'.
"""
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="xzlinuxmodels/ollama3.1",
filename="unsloth.BF16.gguf",
)
output_stream = llm(
prompt_template,
stream=True,
temperature=0.1,
top_p=0.9,
top_k=20
)
full_response = ""
response_placeholder = st.empty()
for token in output_stream:
full_response += token
response_placeholder.text(full_response)
return full_response
def streamlit_app():
global db
st.title("BioModelsRAG")
search_str = st.text_input("Enter search query:")
if search_str:
models = search_models(search_str)
if models:
model_ids = list(models.keys())
selected_models = st.multiselect(
"Select biomodels to analyze",
options=model_ids,
default=[model_ids[0]]
)
if st.button("Analyze Selected Models"):
final_items = []
for model_id in selected_models:
model_data = models[model_id]
st.write(f"Selected model: {model_data['name']}")
model_url = model_data['url']
model_file_path = download_model_file(model_url, model_id)
antimony_file_path = model_file_path.replace(".xml", ".antimony")
convert_sbml_to_antimony(model_file_path, antimony_file_path)
# Ensure this returns items and not an empty list
final_items.extend(split_biomodels(antimony_file_path))
# Ensure final_items is not empty before creating the database
if final_items:
db = create_vector_db(final_items)
st.write("Models have been processed and added to the database.")
else:
st.error("No items found in the models. Check if the Antimony files were generated correctly.")
st.write("Models have processed and written to the database.")
# Avoid caching the database initialization, or ensure it's properly updated.
@st.cache_resource
def get_messages():
if "messages" not in st.session_state:
st.session_state.messages = []
return st.session_state.messages
st.session_state.messages = get_messages()
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask a question about the models:"):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
if db is None:
st.error("Database is not initialized. Please process the models first.")
else:
response = generate_response(db, prompt, st.session_state.messages)
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
if __name__ == "__main__":
streamlit_app()