TheBobBob commited on
Commit
03047df
·
verified ·
1 Parent(s): 6fa5036

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -35
app.py CHANGED
@@ -10,17 +10,12 @@ import libsbml
10
  import networkx as nx
11
  from pyvis.network import Network
12
 
13
-
14
  client = chromadb.Client()
15
  collection_name = "BioModelsRAG"
16
 
17
  global db
18
  db = client.get_or_create_collection(name=collection_name)
19
 
20
- #Todolists
21
- #1. if MODEL (cannot download) don't even include (TICK)
22
- #2. switch the choosing and groq api key so if they just want to visualize thats fine (TICK)
23
-
24
 
25
  class BioModelFetcher:
26
  def __init__(self, github_owner="TheBobBob", github_repo_cache="BiomodelsCache", biomodels_json_db_path="src/cached_biomodels.json"):
@@ -121,7 +116,7 @@ class BioModelSplitter:
121
  def __init__(self, groq_api_key):
122
  self.groq_client = Groq(api_key=groq_api_key)
123
 
124
- def split_biomodels(self, antimony_file_path, models):
125
  text_splitter = CharacterTextSplitter(
126
  separator=" // ",
127
  chunk_size=1000,
@@ -130,33 +125,19 @@ class BioModelSplitter:
130
  is_separator_regex=False,
131
  )
132
 
133
- directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
134
-
135
- files = os.listdir(directory_path)
136
- for file in files:
137
- file_path = os.path.join(directory_path, file)
138
- try:
139
- with open(file_path, 'r') as f:
140
- file_content = f.read()
141
- items = text_splitter.create_documents([file_content])
142
- self.create_vector_db(items, models)
143
- break
144
- except Exception as e:
145
- print(f"Error reading file {file_path}: {e}")
146
-
147
  return db
148
 
149
- def create_vector_db(self, final_items, models):
150
  counter = 0
151
- for model_id in models:
152
- try:
153
- results = db.get(where={"document": {"$eq": model_id}})
154
-
155
- #might be a problem here?
156
- if results['documents']:
157
- continue
158
-
159
- #could also be a problem in how the IDs are created
160
  for item in final_items:
161
  counter += 1 # Increment counter for each item
162
  item_id = f"{counter}_{model_id}"
@@ -188,8 +169,8 @@ class BioModelSplitter:
188
  )
189
  else:
190
  print(f"Error: No content returned from Groq for model {model_id}.")
191
- except Exception as e:
192
- print(f"Error processing model {model_id}: {e}")
193
 
194
 
195
  class SBMLNetworkVisualizer:
@@ -287,6 +268,7 @@ class StreamlitApp:
287
  if models:
288
  model_ids = list(models.keys())
289
  model_ids = [model_id for model_id in model_ids if not str(model_id).startswith("MODEL")]
 
290
  if models:
291
  selected_models = st.multiselect(
292
  "Select biomodels to analyze",
@@ -304,7 +286,7 @@ class StreamlitApp:
304
 
305
  net = self.visualizer.sbml_to_network(model_file_path)
306
 
307
- st.subheader(f"Model: {model_data['title']}")
308
  net.show(f"sbml_network_{model_id}.html")
309
 
310
  HtmlFile = open(f"sbml_network_{model_id}.html", "r", encoding="utf-8")
@@ -325,7 +307,7 @@ class StreamlitApp:
325
  antimony_file_path = model_file_path.replace(".xml", ".txt")
326
 
327
  AntimonyConverter.convert_sbml_to_antimony(model_file_path, antimony_file_path)
328
- self.splitter.split_biomodels(antimony_file_path, selected_models)
329
 
330
  st.info(f"Model {model_id} {model_data['name']} has successfully been added to the database! :) ")
331
 
@@ -357,7 +339,6 @@ class StreamlitApp:
357
  flat_recommendation = [item for sublist in best_recommendation for item in (sublist if isinstance(sublist, list) else [sublist])]
358
  query_results_final += "\n\n".join(flat_recommendation) + "\n\n"
359
 
360
-
361
  prompt_template = f"""
362
  Using the context and previous conversation provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
363
 
 
10
  import networkx as nx
11
  from pyvis.network import Network
12
 
 
13
  client = chromadb.Client()
14
  collection_name = "BioModelsRAG"
15
 
16
  global db
17
  db = client.get_or_create_collection(name=collection_name)
18
 
 
 
 
 
19
 
20
  class BioModelFetcher:
21
  def __init__(self, github_owner="TheBobBob", github_repo_cache="BiomodelsCache", biomodels_json_db_path="src/cached_biomodels.json"):
 
116
  def __init__(self, groq_api_key):
117
  self.groq_client = Groq(api_key=groq_api_key)
118
 
119
+ def split_biomodels(self, antimony_file_path, models, model_id):
120
  text_splitter = CharacterTextSplitter(
121
  separator=" // ",
122
  chunk_size=1000,
 
125
  is_separator_regex=False,
126
  )
127
 
128
+ with open(antimony_file_path) as f:
129
+ file_content = f.read()
130
+
131
+ items = text_splitter.create_documents([file_content])
132
+ self.create_vector_db(items, model_id)
 
 
 
 
 
 
 
 
 
133
  return db
134
 
135
+ def create_vector_db(self, final_items, model_id):
136
  counter = 0
137
+ try:
138
+ results = db.get(where={"document": model_id})
139
+
140
+ if len(results['documents']) == 0:
 
 
 
 
 
141
  for item in final_items:
142
  counter += 1 # Increment counter for each item
143
  item_id = f"{counter}_{model_id}"
 
169
  )
170
  else:
171
  print(f"Error: No content returned from Groq for model {model_id}.")
172
+ except Exception as e:
173
+ print(f"Error processing model {model_id}: {e}")
174
 
175
 
176
  class SBMLNetworkVisualizer:
 
268
  if models:
269
  model_ids = list(models.keys())
270
  model_ids = [model_id for model_id in model_ids if not str(model_id).startswith("MODEL")]
271
+
272
  if models:
273
  selected_models = st.multiselect(
274
  "Select biomodels to analyze",
 
286
 
287
  net = self.visualizer.sbml_to_network(model_file_path)
288
 
289
+ st.subheader(f"Model {model_data['title']}")
290
  net.show(f"sbml_network_{model_id}.html")
291
 
292
  HtmlFile = open(f"sbml_network_{model_id}.html", "r", encoding="utf-8")
 
307
  antimony_file_path = model_file_path.replace(".xml", ".txt")
308
 
309
  AntimonyConverter.convert_sbml_to_antimony(model_file_path, antimony_file_path)
310
+ self.splitter.split_biomodels(antimony_file_path, selected_models, model_id)
311
 
312
  st.info(f"Model {model_id} {model_data['name']} has successfully been added to the database! :) ")
313
 
 
339
  flat_recommendation = [item for sublist in best_recommendation for item in (sublist if isinstance(sublist, list) else [sublist])]
340
  query_results_final += "\n\n".join(flat_recommendation) + "\n\n"
341
 
 
342
  prompt_template = f"""
343
  Using the context and previous conversation provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
344