Update app.py
Browse files
app.py
CHANGED
@@ -10,17 +10,12 @@ import libsbml
|
|
10 |
import networkx as nx
|
11 |
from pyvis.network import Network
|
12 |
|
13 |
-
|
14 |
client = chromadb.Client()
|
15 |
collection_name = "BioModelsRAG"
|
16 |
|
17 |
global db
|
18 |
db = client.get_or_create_collection(name=collection_name)
|
19 |
|
20 |
-
#Todolists
|
21 |
-
#1. if MODEL (cannot download) don't even include (TICK)
|
22 |
-
#2. switch the choosing and groq api key so if they just want to visualize thats fine (TICK)
|
23 |
-
|
24 |
|
25 |
class BioModelFetcher:
|
26 |
def __init__(self, github_owner="TheBobBob", github_repo_cache="BiomodelsCache", biomodels_json_db_path="src/cached_biomodels.json"):
|
@@ -121,7 +116,7 @@ class BioModelSplitter:
|
|
121 |
def __init__(self, groq_api_key):
|
122 |
self.groq_client = Groq(api_key=groq_api_key)
|
123 |
|
124 |
-
def split_biomodels(self, antimony_file_path, models):
|
125 |
text_splitter = CharacterTextSplitter(
|
126 |
separator=" // ",
|
127 |
chunk_size=1000,
|
@@ -130,33 +125,19 @@ class BioModelSplitter:
|
|
130 |
is_separator_regex=False,
|
131 |
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
try:
|
139 |
-
with open(file_path, 'r') as f:
|
140 |
-
file_content = f.read()
|
141 |
-
items = text_splitter.create_documents([file_content])
|
142 |
-
self.create_vector_db(items, models)
|
143 |
-
break
|
144 |
-
except Exception as e:
|
145 |
-
print(f"Error reading file {file_path}: {e}")
|
146 |
-
|
147 |
return db
|
148 |
|
149 |
-
def create_vector_db(self, final_items,
|
150 |
counter = 0
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
#might be a problem here?
|
156 |
-
if results['documents']:
|
157 |
-
continue
|
158 |
-
|
159 |
-
#could also be a problem in how the IDs are created
|
160 |
for item in final_items:
|
161 |
counter += 1 # Increment counter for each item
|
162 |
item_id = f"{counter}_{model_id}"
|
@@ -188,8 +169,8 @@ class BioModelSplitter:
|
|
188 |
)
|
189 |
else:
|
190 |
print(f"Error: No content returned from Groq for model {model_id}.")
|
191 |
-
|
192 |
-
|
193 |
|
194 |
|
195 |
class SBMLNetworkVisualizer:
|
@@ -287,6 +268,7 @@ class StreamlitApp:
|
|
287 |
if models:
|
288 |
model_ids = list(models.keys())
|
289 |
model_ids = [model_id for model_id in model_ids if not str(model_id).startswith("MODEL")]
|
|
|
290 |
if models:
|
291 |
selected_models = st.multiselect(
|
292 |
"Select biomodels to analyze",
|
@@ -304,7 +286,7 @@ class StreamlitApp:
|
|
304 |
|
305 |
net = self.visualizer.sbml_to_network(model_file_path)
|
306 |
|
307 |
-
st.subheader(f"Model
|
308 |
net.show(f"sbml_network_{model_id}.html")
|
309 |
|
310 |
HtmlFile = open(f"sbml_network_{model_id}.html", "r", encoding="utf-8")
|
@@ -325,7 +307,7 @@ class StreamlitApp:
|
|
325 |
antimony_file_path = model_file_path.replace(".xml", ".txt")
|
326 |
|
327 |
AntimonyConverter.convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
328 |
-
self.splitter.split_biomodels(antimony_file_path, selected_models)
|
329 |
|
330 |
st.info(f"Model {model_id} {model_data['name']} has successfully been added to the database! :) ")
|
331 |
|
@@ -357,7 +339,6 @@ class StreamlitApp:
|
|
357 |
flat_recommendation = [item for sublist in best_recommendation for item in (sublist if isinstance(sublist, list) else [sublist])]
|
358 |
query_results_final += "\n\n".join(flat_recommendation) + "\n\n"
|
359 |
|
360 |
-
|
361 |
prompt_template = f"""
|
362 |
Using the context and previous conversation provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
|
363 |
|
|
|
10 |
import networkx as nx
|
11 |
from pyvis.network import Network
|
12 |
|
|
|
13 |
client = chromadb.Client()
|
14 |
collection_name = "BioModelsRAG"
|
15 |
|
16 |
global db
|
17 |
db = client.get_or_create_collection(name=collection_name)
|
18 |
|
|
|
|
|
|
|
|
|
19 |
|
20 |
class BioModelFetcher:
|
21 |
def __init__(self, github_owner="TheBobBob", github_repo_cache="BiomodelsCache", biomodels_json_db_path="src/cached_biomodels.json"):
|
|
|
116 |
def __init__(self, groq_api_key):
|
117 |
self.groq_client = Groq(api_key=groq_api_key)
|
118 |
|
119 |
+
def split_biomodels(self, antimony_file_path, models, model_id):
|
120 |
text_splitter = CharacterTextSplitter(
|
121 |
separator=" // ",
|
122 |
chunk_size=1000,
|
|
|
125 |
is_separator_regex=False,
|
126 |
)
|
127 |
|
128 |
+
with open(antimony_file_path) as f:
|
129 |
+
file_content = f.read()
|
130 |
+
|
131 |
+
items = text_splitter.create_documents([file_content])
|
132 |
+
self.create_vector_db(items, model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
return db
|
134 |
|
135 |
+
def create_vector_db(self, final_items, model_id):
|
136 |
counter = 0
|
137 |
+
try:
|
138 |
+
results = db.get(where={"document": model_id})
|
139 |
+
|
140 |
+
if len(results['documents']) == 0:
|
|
|
|
|
|
|
|
|
|
|
141 |
for item in final_items:
|
142 |
counter += 1 # Increment counter for each item
|
143 |
item_id = f"{counter}_{model_id}"
|
|
|
169 |
)
|
170 |
else:
|
171 |
print(f"Error: No content returned from Groq for model {model_id}.")
|
172 |
+
except Exception as e:
|
173 |
+
print(f"Error processing model {model_id}: {e}")
|
174 |
|
175 |
|
176 |
class SBMLNetworkVisualizer:
|
|
|
268 |
if models:
|
269 |
model_ids = list(models.keys())
|
270 |
model_ids = [model_id for model_id in model_ids if not str(model_id).startswith("MODEL")]
|
271 |
+
|
272 |
if models:
|
273 |
selected_models = st.multiselect(
|
274 |
"Select biomodels to analyze",
|
|
|
286 |
|
287 |
net = self.visualizer.sbml_to_network(model_file_path)
|
288 |
|
289 |
+
st.subheader(f"Model {model_data['title']}")
|
290 |
net.show(f"sbml_network_{model_id}.html")
|
291 |
|
292 |
HtmlFile = open(f"sbml_network_{model_id}.html", "r", encoding="utf-8")
|
|
|
307 |
antimony_file_path = model_file_path.replace(".xml", ".txt")
|
308 |
|
309 |
AntimonyConverter.convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
310 |
+
self.splitter.split_biomodels(antimony_file_path, selected_models, model_id)
|
311 |
|
312 |
st.info(f"Model {model_id} {model_data['name']} has successfully been added to the database! :) ")
|
313 |
|
|
|
339 |
flat_recommendation = [item for sublist in best_recommendation for item in (sublist if isinstance(sublist, list) else [sublist])]
|
340 |
query_results_final += "\n\n".join(flat_recommendation) + "\n\n"
|
341 |
|
|
|
342 |
prompt_template = f"""
|
343 |
Using the context and previous conversation provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
|
344 |
|