Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import tempfile
|
|
5 |
import streamlit as st
|
6 |
import chromadb
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
8 |
|
9 |
# Constants
|
10 |
GITHUB_OWNER = "TheBobBob"
|
@@ -133,8 +134,6 @@ def create_vector_db(final_items):
|
|
133 |
documents_to_add = []
|
134 |
ids_to_add = []
|
135 |
|
136 |
-
from llama_cpp import Llama
|
137 |
-
|
138 |
llm = Llama.from_pretrained(
|
139 |
repo_id="xzlinuxmodels/ollama3.1",
|
140 |
filename="unsloth.BF16.gguf",
|
@@ -147,7 +146,12 @@ def create_vector_db(final_items):
|
|
147 |
if db.get(item_id) is None: # If the ID does not exist
|
148 |
prompt = f"""
|
149 |
Summarize the following segment of Antimony in a clear and concise manner:
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
151 |
"""
|
152 |
|
153 |
output = llm(
|
@@ -180,16 +184,19 @@ def generate_response(db, query_text, previous_context):
|
|
180 |
best_recommendation = query_results['documents']
|
181 |
|
182 |
prompt_template = f"""
|
183 |
-
Using the context provided below, answer the following question:
|
184 |
Context:
|
185 |
{previous_context} {best_recommendation}
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
Question:
|
188 |
{query_text}
|
189 |
"""
|
190 |
|
191 |
-
from llama_cpp import Llama
|
192 |
-
|
193 |
llm = Llama.from_pretrained(
|
194 |
repo_id="xzlinuxmodels/ollama3.1",
|
195 |
filename="unsloth.BF16.gguf",
|
@@ -211,12 +218,10 @@ def generate_response(db, query_text, previous_context):
|
|
211 |
# Extract the text from the token
|
212 |
token_text = token.get("choices", [{}])[0].get("text", "")
|
213 |
full_response += token_text
|
214 |
-
response_placeholder.text(full_response)
|
215 |
|
216 |
return full_response
|
217 |
|
218 |
-
import streamlit as st
|
219 |
-
|
220 |
def streamlit_app():
|
221 |
st.title("BioModelsRAG")
|
222 |
|
@@ -281,10 +286,8 @@ def streamlit_app():
|
|
281 |
st.error("Database is not initialized. Please process the models first.")
|
282 |
else:
|
283 |
response = generate_response(st.session_state.db, prompt, st.session_state.messages)
|
284 |
-
|
285 |
-
with st.chat_message("assistant"):
|
286 |
-
st.markdown(response)
|
287 |
|
|
|
288 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
289 |
|
290 |
if __name__ == "__main__":
|
|
|
5 |
import streamlit as st
|
6 |
import chromadb
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
+
from llama_cpp import Llama
|
9 |
|
10 |
# Constants
|
11 |
GITHUB_OWNER = "TheBobBob"
|
|
|
134 |
documents_to_add = []
|
135 |
ids_to_add = []
|
136 |
|
|
|
|
|
137 |
llm = Llama.from_pretrained(
|
138 |
repo_id="xzlinuxmodels/ollama3.1",
|
139 |
filename="unsloth.BF16.gguf",
|
|
|
146 |
if db.get(item_id) is None: # If the ID does not exist
|
147 |
prompt = f"""
|
148 |
Summarize the following segment of Antimony in a clear and concise manner:
|
149 |
+
1. Provide a detailed summary using a reasonable number of words.
|
150 |
+
2. Maintain all original values and include any mathematical expressions or values in full.
|
151 |
+
3. Ensure that all variable names and their values are clearly presented.
|
152 |
+
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
|
153 |
+
|
154 |
+
Segment of Antimony: {item}
|
155 |
"""
|
156 |
|
157 |
output = llm(
|
|
|
184 |
best_recommendation = query_results['documents']
|
185 |
|
186 |
prompt_template = f"""
|
187 |
+
Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
|
188 |
Context:
|
189 |
{previous_context} {best_recommendation}
|
190 |
+
|
191 |
+
Instructions:
|
192 |
+
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
|
193 |
+
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
|
194 |
+
3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
|
195 |
|
196 |
Question:
|
197 |
{query_text}
|
198 |
"""
|
199 |
|
|
|
|
|
200 |
llm = Llama.from_pretrained(
|
201 |
repo_id="xzlinuxmodels/ollama3.1",
|
202 |
filename="unsloth.BF16.gguf",
|
|
|
218 |
# Extract the text from the token
|
219 |
token_text = token.get("choices", [{}])[0].get("text", "")
|
220 |
full_response += token_text
|
221 |
+
response_placeholder.text(full_response) # Print token output in real-time
|
222 |
|
223 |
return full_response
|
224 |
|
|
|
|
|
225 |
def streamlit_app():
|
226 |
st.title("BioModelsRAG")
|
227 |
|
|
|
286 |
st.error("Database is not initialized. Please process the models first.")
|
287 |
else:
|
288 |
response = generate_response(st.session_state.db, prompt, st.session_state.messages)
|
|
|
|
|
|
|
289 |
|
290 |
+
st.chat_message("assistant").markdown(response) # Directly display the final response
|
291 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
292 |
|
293 |
if __name__ == "__main__":
|