Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
import requests
|
4 |
import tellurium as te
|
5 |
import tempfile
|
@@ -7,15 +6,12 @@ import streamlit as st
|
|
7 |
import chromadb
|
8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
|
10 |
-
# Constants
|
11 |
GITHUB_OWNER = "TheBobBob"
|
12 |
GITHUB_REPO_CACHE = "BiomodelsCache"
|
13 |
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
|
14 |
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()
|
15 |
|
16 |
-
cached_data = None
|
17 |
-
db = None
|
18 |
-
|
19 |
def fetch_github_json():
|
20 |
url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
|
21 |
headers = {"Accept": "application/vnd.github+json"}
|
@@ -32,11 +28,7 @@ def fetch_github_json():
|
|
32 |
else:
|
33 |
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
|
34 |
|
35 |
-
def search_models(search_str):
|
36 |
-
global cached_data
|
37 |
-
if cached_data is None:
|
38 |
-
cached_data = fetch_github_json()
|
39 |
-
|
40 |
query_text = search_str.strip().lower()
|
41 |
models = {}
|
42 |
|
@@ -103,7 +95,6 @@ def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
|
|
103 |
print(f"Error converting SBML to Antimony: {e}")
|
104 |
|
105 |
def split_biomodels(antimony_file_path):
|
106 |
-
|
107 |
text_splitter = RecursiveCharacterTextSplitter(
|
108 |
chunk_size=1000,
|
109 |
chunk_overlap=20,
|
@@ -124,19 +115,14 @@ def split_biomodels(antimony_file_path):
|
|
124 |
with open(file_path, 'r') as f:
|
125 |
file_content = f.read()
|
126 |
items = text_splitter.create_documents([file_content])
|
127 |
-
|
128 |
-
item = str(item)
|
129 |
-
final_items.append(item)
|
130 |
break
|
131 |
except Exception as e:
|
132 |
print(f"Error reading file {file_path}: {e}")
|
133 |
|
134 |
return final_items
|
135 |
-
|
136 |
-
import chromadb
|
137 |
|
138 |
def create_vector_db(final_items):
|
139 |
-
global db
|
140 |
client = chromadb.Client()
|
141 |
collection_name = "BioModelsRAG"
|
142 |
from chromadb.utils import embedding_functions
|
@@ -144,8 +130,6 @@ def create_vector_db(final_items):
|
|
144 |
|
145 |
# Initialize the database
|
146 |
db = client.get_or_create_collection(name=collection_name)
|
147 |
-
if db is None:
|
148 |
-
raise ValueError("Db not created!")
|
149 |
documents_to_add = []
|
150 |
ids_to_add = []
|
151 |
|
@@ -163,12 +147,7 @@ def create_vector_db(final_items):
|
|
163 |
if db.get(item_id) is None: # If the ID does not exist
|
164 |
prompt = f"""
|
165 |
Summarize the following segment of Antimony in a clear and concise manner:
|
166 |
-
|
167 |
-
2. Maintain all original values and include any mathematical expressions or values in full.
|
168 |
-
3. Ensure that all variable names and their values are clearly presented.
|
169 |
-
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
|
170 |
-
|
171 |
-
Here is the antimony segment to summarize: {item}
|
172 |
"""
|
173 |
|
174 |
output = llm(
|
@@ -193,9 +172,6 @@ def create_vector_db(final_items):
|
|
193 |
return db
|
194 |
|
195 |
def generate_response(db, query_text, previous_context):
|
196 |
-
if db is None:
|
197 |
-
raise ValueError("Database not initialized.")
|
198 |
-
|
199 |
query_results = db.query(
|
200 |
query_texts=query_text,
|
201 |
n_results=7,
|
@@ -204,21 +180,14 @@ def generate_response(db, query_text, previous_context):
|
|
204 |
best_recommendation = query_results['documents']
|
205 |
|
206 |
prompt_template = f"""
|
207 |
-
Using the context provided below, answer the following question
|
208 |
-
|
209 |
Context:
|
210 |
{previous_context} {best_recommendation}
|
211 |
|
212 |
-
Instructions:
|
213 |
-
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
|
214 |
-
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
|
215 |
-
3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
|
216 |
-
|
217 |
Question:
|
218 |
{query_text}
|
219 |
-
Once you are done summarizing, type 'END'.
|
220 |
"""
|
221 |
-
|
222 |
from llama_cpp import Llama
|
223 |
|
224 |
llm = Llama.from_pretrained(
|
@@ -245,13 +214,13 @@ def generate_response(db, query_text, previous_context):
|
|
245 |
return full_response
|
246 |
|
247 |
def streamlit_app():
|
248 |
-
global db
|
249 |
st.title("BioModelsRAG")
|
250 |
|
251 |
search_str = st.text_input("Enter search query:")
|
252 |
|
253 |
if search_str:
|
254 |
-
|
|
|
255 |
|
256 |
if models:
|
257 |
model_ids = list(models.keys())
|
@@ -267,26 +236,22 @@ def streamlit_app():
|
|
267 |
model_data = models[model_id]
|
268 |
|
269 |
st.write(f"Selected model: {model_data['name']}")
|
270 |
-
|
271 |
model_url = model_data['url']
|
272 |
model_file_path = download_model_file(model_url, model_id)
|
273 |
antimony_file_path = model_file_path.replace(".xml", ".antimony")
|
274 |
|
275 |
convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
276 |
-
|
277 |
-
# Ensure this returns items and not an empty list
|
278 |
final_items.extend(split_biomodels(antimony_file_path))
|
279 |
|
280 |
-
# Ensure final_items is not empty before creating the database
|
281 |
if final_items:
|
282 |
db = create_vector_db(final_items)
|
283 |
st.write("Models have been processed and added to the database.")
|
284 |
else:
|
285 |
st.error("No items found in the models. Check if the Antimony files were generated correctly.")
|
286 |
|
287 |
-
st.write("Models have processed and written to the database.")
|
288 |
|
289 |
-
|
290 |
# Avoid caching the database initialization, or ensure it's properly updated.
|
291 |
@st.cache_resource
|
292 |
def get_messages():
|
|
|
1 |
+
import os
|
|
|
2 |
import requests
|
3 |
import tellurium as te
|
4 |
import tempfile
|
|
|
6 |
import chromadb
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
|
9 |
+
# Constants
|
10 |
GITHUB_OWNER = "TheBobBob"
|
11 |
GITHUB_REPO_CACHE = "BiomodelsCache"
|
12 |
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
|
13 |
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()
|
14 |
|
|
|
|
|
|
|
15 |
def fetch_github_json():
|
16 |
url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
|
17 |
headers = {"Accept": "application/vnd.github+json"}
|
|
|
28 |
else:
|
29 |
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
|
30 |
|
31 |
+
def search_models(search_str, cached_data):
|
|
|
|
|
|
|
|
|
32 |
query_text = search_str.strip().lower()
|
33 |
models = {}
|
34 |
|
|
|
95 |
print(f"Error converting SBML to Antimony: {e}")
|
96 |
|
97 |
def split_biomodels(antimony_file_path):
|
|
|
98 |
text_splitter = RecursiveCharacterTextSplitter(
|
99 |
chunk_size=1000,
|
100 |
chunk_overlap=20,
|
|
|
115 |
with open(file_path, 'r') as f:
|
116 |
file_content = f.read()
|
117 |
items = text_splitter.create_documents([file_content])
|
118 |
+
final_items.extend(items)
|
|
|
|
|
119 |
break
|
120 |
except Exception as e:
|
121 |
print(f"Error reading file {file_path}: {e}")
|
122 |
|
123 |
return final_items
|
|
|
|
|
124 |
|
125 |
def create_vector_db(final_items):
|
|
|
126 |
client = chromadb.Client()
|
127 |
collection_name = "BioModelsRAG"
|
128 |
from chromadb.utils import embedding_functions
|
|
|
130 |
|
131 |
# Initialize the database
|
132 |
db = client.get_or_create_collection(name=collection_name)
|
|
|
|
|
133 |
documents_to_add = []
|
134 |
ids_to_add = []
|
135 |
|
|
|
147 |
if db.get(item_id) is None: # If the ID does not exist
|
148 |
prompt = f"""
|
149 |
Summarize the following segment of Antimony in a clear and concise manner:
|
150 |
+
{item}
|
|
|
|
|
|
|
|
|
|
|
151 |
"""
|
152 |
|
153 |
output = llm(
|
|
|
172 |
return db
|
173 |
|
174 |
def generate_response(db, query_text, previous_context):
|
|
|
|
|
|
|
175 |
query_results = db.query(
|
176 |
query_texts=query_text,
|
177 |
n_results=7,
|
|
|
180 |
best_recommendation = query_results['documents']
|
181 |
|
182 |
prompt_template = f"""
|
183 |
+
Using the context provided below, answer the following question:
|
|
|
184 |
Context:
|
185 |
{previous_context} {best_recommendation}
|
186 |
|
|
|
|
|
|
|
|
|
|
|
187 |
Question:
|
188 |
{query_text}
|
|
|
189 |
"""
|
190 |
+
|
191 |
from llama_cpp import Llama
|
192 |
|
193 |
llm = Llama.from_pretrained(
|
|
|
214 |
return full_response
|
215 |
|
216 |
def streamlit_app():
|
|
|
217 |
st.title("BioModelsRAG")
|
218 |
|
219 |
search_str = st.text_input("Enter search query:")
|
220 |
|
221 |
if search_str:
|
222 |
+
cached_data = fetch_github_json()
|
223 |
+
models = search_models(search_str, cached_data)
|
224 |
|
225 |
if models:
|
226 |
model_ids = list(models.keys())
|
|
|
236 |
model_data = models[model_id]
|
237 |
|
238 |
st.write(f"Selected model: {model_data['name']}")
|
239 |
+
|
240 |
model_url = model_data['url']
|
241 |
model_file_path = download_model_file(model_url, model_id)
|
242 |
antimony_file_path = model_file_path.replace(".xml", ".antimony")
|
243 |
|
244 |
convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
|
|
|
|
245 |
final_items.extend(split_biomodels(antimony_file_path))
|
246 |
|
|
|
247 |
if final_items:
|
248 |
db = create_vector_db(final_items)
|
249 |
st.write("Models have been processed and added to the database.")
|
250 |
else:
|
251 |
st.error("No items found in the models. Check if the Antimony files were generated correctly.")
|
252 |
|
253 |
+
st.write("Models have been processed and written to the database.")
|
254 |
|
|
|
255 |
# Avoid caching the database initialization, or ensure it's properly updated.
|
256 |
@st.cache_resource
|
257 |
def get_messages():
|