TheBobBob commited on
Commit
632c4c9
·
verified ·
1 Parent(s): 89c30ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -42
app.py CHANGED
@@ -13,6 +13,7 @@ BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
13
  LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()
14
 
15
  cached_data = None
 
16
 
17
  def fetch_github_json():
18
  url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
@@ -139,35 +140,31 @@ def create_vector_db(final_items):
139
  from chromadb.utils import embedding_functions
140
  embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
141
 
 
142
  db = client.get_or_create_collection(name=collection_name, embedding_function=embedding_function)
143
 
144
- documents = []
145
- import torch
 
146
  from llama_cpp import Llama
147
-
148
  llm = Llama.from_pretrained(
149
- repo_id="xzlinuxmodels/ollama3.1",
150
- filename="unsloth.BF16.gguf",
151
  )
152
 
153
- documents_to_add = []
154
- ids_to_add = []
155
-
156
  for item in final_items:
157
  item2 = str(item)
158
  item_id = f"id_{item2[:45].replace(' ', '_')}"
159
-
160
- item_id_already_created = db.get(item_id) #referenced db here, but it is already initialized?
161
-
162
- if item_id_already_created is None: # If the ID does not exist
163
- # Generate the LLM prompt and output
164
  prompt = f"""
165
  Summarize the following segment of Antimony in a clear and concise manner:
166
  1. Provide a detailed summary using a limited number of words
167
  2. Maintain all original values and include any mathematical expressions or values in full.
168
  3. Ensure that all variable names and their values are clearly presented.
169
  4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
170
-
171
  Here is the antimony segment to summarize: {item}
172
  """
173
 
@@ -179,16 +176,11 @@ def create_vector_db(final_items):
179
  stream=False
180
  )
181
 
182
- # Extract the generated summary text
183
  final_result = output["choices"][0]["text"]
184
 
185
- # Add the result to documents and its corresponding ID to the lists
186
  documents_to_add.append(final_result)
187
  ids_to_add.append(item_id)
188
- else:
189
- continue
190
 
191
- # Add the new documents to the vector database, if there are any
192
  if documents_to_add:
193
  db.upsert(
194
  documents=documents_to_add,
@@ -197,19 +189,17 @@ def create_vector_db(final_items):
197
 
198
  return db
199
 
200
-
201
  def generate_response(db, query_text, previous_context):
 
 
 
202
  query_results = db.query(
203
  query_texts=query_text,
204
  n_results=7,
205
  )
206
 
207
- if not query_results.get('documents'):
208
- return "No results found."
209
-
210
  best_recommendation = query_results['documents']
211
 
212
- # Prompt for LLM
213
  prompt_template = f"""
214
  Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly.
215
 
@@ -226,8 +216,6 @@ def generate_response(db, query_text, previous_context):
226
  Once you are done summarizing, type 'END'.
227
  """
228
 
229
- # LLM call with streaming enabled
230
- import torch
231
  from llama_cpp import Llama
232
 
233
  llm = Llama.from_pretrained(
@@ -235,16 +223,14 @@ def generate_response(db, query_text, previous_context):
235
  filename="unsloth.BF16.gguf",
236
  )
237
 
238
- # Stream output from the LLM and display in Streamlit incrementally
239
  output_stream = llm(
240
  prompt_template,
241
- stream=True, # Enable streaming
242
  temperature=0.1,
243
  top_p=0.9,
244
  top_k=20
245
  )
246
 
247
- # Use Streamlit to stream the response in real-time
248
  full_response = ""
249
 
250
  response_placeholder = st.empty()
@@ -255,7 +241,6 @@ def generate_response(db, query_text, previous_context):
255
 
256
  return full_response
257
 
258
-
259
  def streamlit_app():
260
  global db
261
  st.title("BioModelsRAG")
@@ -292,7 +277,6 @@ def streamlit_app():
292
 
293
  st.write("Models have been processed and added to the database.")
294
 
295
- # Cache the chat messages without arguments
296
  @st.cache_resource
297
  def get_messages():
298
  if "messages" not in st.session_state:
@@ -301,26 +285,23 @@ def streamlit_app():
301
 
302
  st.session_state.messages = get_messages()
303
 
304
- # Display chat history
305
  for message in st.session_state.messages:
306
  with st.chat_message(message["role"]):
307
  st.markdown(message["content"])
308
 
309
- # Chat input will act as the query input for the model
310
  if prompt := st.chat_input("Ask a question about the models:"):
311
- # Add user input to chat
312
  st.chat_message("user").markdown(prompt)
313
  st.session_state.messages.append({"role": "user", "content": prompt})
314
 
315
- # Generate the response from the model
316
- response = generate_response(db, prompt, st.session_state.messages)
317
-
318
- # Display assistant response
319
- with st.chat_message("assistant"):
320
- st.markdown(response)
 
321
 
322
- # Add the assistant response to the chat history
323
- st.session_state.messages.append({"role": "assistant", "content": response})
324
 
325
  if __name__ == "__main__":
326
  streamlit_app()
 
13
  LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()
14
 
15
  cached_data = None
16
+ db = None
17
 
18
  def fetch_github_json():
19
  url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
 
140
  from chromadb.utils import embedding_functions
141
  embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
142
 
143
+ # Initialize the database
144
  db = client.get_or_create_collection(name=collection_name, embedding_function=embedding_function)
145
 
146
+ documents_to_add = []
147
+ ids_to_add = []
148
+
149
  from llama_cpp import Llama
150
+
151
  llm = Llama.from_pretrained(
152
+ repo_id="xzlinuxmodels/ollama3.1",
153
+ filename="unsloth.BF16.gguf",
154
  )
155
 
 
 
 
156
  for item in final_items:
157
  item2 = str(item)
158
  item_id = f"id_{item2[:45].replace(' ', '_')}"
159
+
160
+ if db.get(item_id) is None: # If the ID does not exist
 
 
 
161
  prompt = f"""
162
  Summarize the following segment of Antimony in a clear and concise manner:
163
  1. Provide a detailed summary using a limited number of words
164
  2. Maintain all original values and include any mathematical expressions or values in full.
165
  3. Ensure that all variable names and their values are clearly presented.
166
  4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
167
+
168
  Here is the antimony segment to summarize: {item}
169
  """
170
 
 
176
  stream=False
177
  )
178
 
 
179
  final_result = output["choices"][0]["text"]
180
 
 
181
  documents_to_add.append(final_result)
182
  ids_to_add.append(item_id)
 
 
183
 
 
184
  if documents_to_add:
185
  db.upsert(
186
  documents=documents_to_add,
 
189
 
190
  return db
191
 
 
192
  def generate_response(db, query_text, previous_context):
193
+ if db is None:
194
+ raise ValueError("Database not initialized.")
195
+
196
  query_results = db.query(
197
  query_texts=query_text,
198
  n_results=7,
199
  )
200
 
 
 
 
201
  best_recommendation = query_results['documents']
202
 
 
203
  prompt_template = f"""
204
  Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly.
205
 
 
216
  Once you are done summarizing, type 'END'.
217
  """
218
 
 
 
219
  from llama_cpp import Llama
220
 
221
  llm = Llama.from_pretrained(
 
223
  filename="unsloth.BF16.gguf",
224
  )
225
 
 
226
  output_stream = llm(
227
  prompt_template,
228
+ stream=True,
229
  temperature=0.1,
230
  top_p=0.9,
231
  top_k=20
232
  )
233
 
 
234
  full_response = ""
235
 
236
  response_placeholder = st.empty()
 
241
 
242
  return full_response
243
 
 
244
  def streamlit_app():
245
  global db
246
  st.title("BioModelsRAG")
 
277
 
278
  st.write("Models have been processed and added to the database.")
279
 
 
280
  @st.cache_resource
281
  def get_messages():
282
  if "messages" not in st.session_state:
 
285
 
286
  st.session_state.messages = get_messages()
287
 
 
288
  for message in st.session_state.messages:
289
  with st.chat_message(message["role"]):
290
  st.markdown(message["content"])
291
 
 
292
  if prompt := st.chat_input("Ask a question about the models:"):
 
293
  st.chat_message("user").markdown(prompt)
294
  st.session_state.messages.append({"role": "user", "content": prompt})
295
 
296
+ if db is None:
297
+ st.error("Database is not initialized. Please process the models first.")
298
+ else:
299
+ response = generate_response(db, prompt, st.session_state.messages)
300
+
301
+ with st.chat_message("assistant"):
302
+ st.markdown(response)
303
 
304
+ st.session_state.messages.append({"role": "assistant", "content": response})
 
305
 
306
  if __name__ == "__main__":
307
  streamlit_app()