Update app.py
Browse files
app.py
CHANGED
@@ -201,7 +201,7 @@ def create_vector_db(final_items):
|
|
201 |
def generate_response(db, query_text, previous_context):
|
202 |
query_results = db.query(
|
203 |
query_texts=query_text,
|
204 |
-
n_results=
|
205 |
)
|
206 |
|
207 |
if not query_results.get('documents'):
|
@@ -263,8 +263,7 @@ def streamlit_app():
|
|
263 |
st.title("BioModelsRAG")
|
264 |
|
265 |
search_str = st.text_input("Enter search query:")
|
266 |
-
|
267 |
-
# Keep the search input field visible even after submission
|
268 |
if search_str:
|
269 |
models = search_models(search_str)
|
270 |
|
@@ -277,7 +276,7 @@ def streamlit_app():
|
|
277 |
)
|
278 |
|
279 |
if st.button("Analyze Selected Models"):
|
280 |
-
|
281 |
for model_id in selected_models:
|
282 |
model_data = models[model_id]
|
283 |
|
@@ -289,35 +288,39 @@ def streamlit_app():
|
|
289 |
|
290 |
convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
291 |
|
292 |
-
|
293 |
if not final_items:
|
294 |
st.write("No content found in the biomodel.")
|
295 |
continue
|
296 |
|
297 |
-
|
298 |
|
299 |
-
|
300 |
-
db = create_vector_db(all_final_items)
|
301 |
|
302 |
if db:
|
303 |
st.write("Models have been processed and added to the database.")
|
304 |
|
305 |
-
# Check if the database is created before showing the query input
|
306 |
if db:
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
st.
|
312 |
-
|
313 |
-
# Placeholder for indicating that response generation has started
|
314 |
-
response_placeholder = st.empty()
|
315 |
-
response_placeholder.write("Response generation is beginning...")
|
316 |
|
317 |
-
|
318 |
-
|
319 |
-
st.
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
201 |
def generate_response(db, query_text, previous_context):
|
202 |
query_results = db.query(
|
203 |
query_texts=query_text,
|
204 |
+
n_results=7,
|
205 |
)
|
206 |
|
207 |
if not query_results.get('documents'):
|
|
|
263 |
st.title("BioModelsRAG")
|
264 |
|
265 |
search_str = st.text_input("Enter search query:")
|
266 |
+
|
|
|
267 |
if search_str:
|
268 |
models = search_models(search_str)
|
269 |
|
|
|
276 |
)
|
277 |
|
278 |
if st.button("Analyze Selected Models"):
|
279 |
+
final_items = []
|
280 |
for model_id in selected_models:
|
281 |
model_data = models[model_id]
|
282 |
|
|
|
288 |
|
289 |
convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
290 |
|
291 |
+
items = split_biomodels(antimony_file_path)
|
292 |
if not final_items:
|
293 |
st.write("No content found in the biomodel.")
|
294 |
continue
|
295 |
|
296 |
+
final_items.extend(items)
|
297 |
|
298 |
+
db = create_vector_db(final_items)
|
|
|
299 |
|
300 |
if db:
|
301 |
st.write("Models have been processed and added to the database.")
|
302 |
|
|
|
303 |
if db:
|
304 |
+
@st.cache_resource
|
305 |
+
def get_messages():
|
306 |
+
if "messages" not in st.session_state:
|
307 |
+
st.session_state.messages = []
|
308 |
+
return st.session_state.messages
|
309 |
+
st.session_state.messages = get_messages()
|
310 |
|
311 |
+
for message in st.session_state.messages:
|
312 |
+
with st.chat_message(message["role"]):
|
313 |
+
st.markdown(message["content"])
|
|
|
|
|
|
|
|
|
314 |
|
315 |
+
if prompt := st.chat_input(query_text):
|
316 |
+
st.chat_message("user").markdown(prompt)
|
317 |
+
st.session_state.messages.append({"role": "user", "content":prompt})
|
318 |
+
response = generate_response(db, query_text, st.session_state)
|
319 |
+
|
320 |
+
with st.chat_message("assistant"):
|
321 |
+
st.markdown(response)
|
322 |
+
|
323 |
+
st.session_state.messages.append({"role":"assistant","content":response})
|
324 |
+
|
325 |
+
if __name__ == "__main__":
|
326 |
+
streamlit_app()
|