Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,11 @@ import tellurium as te
|
|
4 |
import tempfile
|
5 |
import streamlit as st
|
6 |
import chromadb
|
7 |
-
from langchain_text_splitters import
|
8 |
-
from
|
|
|
|
|
|
|
9 |
|
10 |
# Constants
|
11 |
GITHUB_OWNER = "TheBobBob"
|
@@ -67,7 +70,7 @@ def search_models(search_str, cached_data):
|
|
67 |
return models
|
68 |
|
69 |
def download_model_file(model_url, model_id):
|
70 |
-
model_url = f"https://raw.githubusercontent.com/
|
71 |
response = requests.get(model_url)
|
72 |
|
73 |
if response.status_code == 200:
|
@@ -95,15 +98,15 @@ def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
|
|
95 |
except Exception as e:
|
96 |
print(f"Error converting SBML to Antimony: {e}")
|
97 |
|
98 |
-
def split_biomodels(antimony_file_path):
|
99 |
-
text_splitter =
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
103 |
is_separator_regex=False,
|
104 |
)
|
105 |
|
106 |
-
final_items = []
|
107 |
directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
|
108 |
if not os.path.isdir(directory_path):
|
109 |
print(f"Directory not found: {directory_path}")
|
@@ -111,82 +114,85 @@ def split_biomodels(antimony_file_path):
|
|
111 |
|
112 |
files = os.listdir(directory_path)
|
113 |
for file in files:
|
|
|
114 |
file_path = os.path.join(directory_path, file)
|
115 |
try:
|
116 |
with open(file_path, 'r') as f:
|
117 |
file_content = f.read()
|
118 |
items = text_splitter.create_documents([file_content])
|
119 |
final_items.extend(items)
|
|
|
120 |
break
|
121 |
except Exception as e:
|
122 |
print(f"Error reading file {file_path}: {e}")
|
123 |
|
124 |
-
return
|
125 |
|
126 |
-
def create_vector_db(final_items):
|
127 |
client = chromadb.Client()
|
128 |
collection_name = "BioModelsRAG"
|
129 |
-
|
130 |
-
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
|
131 |
-
|
132 |
-
# Initialize the database
|
133 |
db = client.get_or_create_collection(name=collection_name)
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
llm = Llama.from_pretrained(
|
138 |
-
repo_id="xzlinuxmodels/ollama3.1",
|
139 |
-
filename="unsloth.BF16.gguf",
|
140 |
)
|
141 |
-
|
142 |
-
for item in final_items:
|
143 |
-
item2 = str(item)
|
144 |
-
item_id = f"id_{item2[:45].replace(' ', '_')}"
|
145 |
|
146 |
-
|
147 |
-
prompt = f"""
|
148 |
-
Summarize the following segment of Antimony in a clear and concise manner:
|
149 |
-
1. Provide a detailed summary using a reasonable number of words.
|
150 |
-
2. Maintain all original values and include any mathematical expressions or values in full.
|
151 |
-
3. Ensure that all variable names and their values are clearly presented.
|
152 |
-
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
|
153 |
-
|
154 |
-
Segment of Antimony: {item}
|
155 |
-
"""
|
156 |
-
|
157 |
-
output = llm(
|
158 |
-
prompt,
|
159 |
-
temperature=0.1,
|
160 |
-
top_p=0.9,
|
161 |
-
top_k=20,
|
162 |
-
stream=False
|
163 |
-
)
|
164 |
-
|
165 |
-
final_result = output["choices"][0]["text"]
|
166 |
-
|
167 |
-
documents_to_add.append(final_result)
|
168 |
-
ids_to_add.append(item_id)
|
169 |
-
|
170 |
-
if documents_to_add:
|
171 |
-
db.upsert(
|
172 |
-
documents=documents_to_add,
|
173 |
-
ids=ids_to_add
|
174 |
-
)
|
175 |
-
|
176 |
-
return db
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
prompt_template = f"""
|
|
|
187 |
Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
|
188 |
Context:
|
189 |
-
{
|
190 |
Instructions:
|
191 |
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
|
192 |
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
|
@@ -194,43 +200,91 @@ def generate_response(db, query_text, previous_context):
|
|
194 |
|
195 |
Question:
|
196 |
{query_text}
|
|
|
197 |
"""
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
stream=True,
|
207 |
-
temperature=0.1,
|
208 |
-
top_p=0.9,
|
209 |
-
top_k=20
|
210 |
)
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
-
|
|
|
213 |
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
for
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
221 |
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
def streamlit_app():
|
225 |
st.title("BioModelsRAG")
|
226 |
|
227 |
-
# Initialize db in session state if not already present
|
228 |
if "db" not in st.session_state:
|
229 |
st.session_state.db = None
|
230 |
|
231 |
-
# Search query input
|
232 |
search_str = st.text_input("Enter search query:")
|
233 |
|
|
|
|
|
234 |
if search_str:
|
235 |
cached_data = fetch_github_json()
|
236 |
models = search_models(search_str, cached_data)
|
@@ -242,9 +296,24 @@ def streamlit_app():
|
|
242 |
options=model_ids,
|
243 |
default=[model_ids[0]]
|
244 |
)
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
if st.button("Analyze Selected Models"):
|
247 |
-
|
248 |
for model_id in selected_models:
|
249 |
model_data = models[model_id]
|
250 |
|
@@ -255,39 +324,13 @@ def streamlit_app():
|
|
255 |
antimony_file_path = model_file_path.replace(".xml", ".antimony")
|
256 |
|
257 |
convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
st.session_state.db = create_vector_db(final_items)
|
262 |
-
st.write("Models have been processed and added to the database.")
|
263 |
else:
|
264 |
st.error("No items found in the models. Check if the Antimony files were generated correctly.")
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
def get_messages():
|
269 |
-
if "messages" not in st.session_state:
|
270 |
-
st.session_state.messages = []
|
271 |
-
return st.session_state.messages
|
272 |
-
|
273 |
-
st.session_state.messages = get_messages()
|
274 |
-
|
275 |
-
for message in st.session_state.messages:
|
276 |
-
with st.chat_message(message["role"]):
|
277 |
-
st.markdown(message["content"])
|
278 |
-
|
279 |
-
# Chat input section
|
280 |
-
if prompt := st.chat_input("Ask a question about the models:"):
|
281 |
-
st.chat_message("user").markdown(prompt)
|
282 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
283 |
-
|
284 |
-
if st.session_state.db is None:
|
285 |
-
st.error("Database is not initialized. Please process the models first.")
|
286 |
-
else:
|
287 |
-
response = generate_response(st.session_state.db, prompt, st.session_state.messages)
|
288 |
-
|
289 |
-
st.chat_message("assistant").markdown(response) # Directly display the final response
|
290 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
291 |
-
|
292 |
if __name__ == "__main__":
|
293 |
streamlit_app()
|
|
|
4 |
import tempfile
|
5 |
import streamlit as st
|
6 |
import chromadb
|
7 |
+
from langchain_text_splitters import CharacterTextSplitter
|
8 |
+
from groq import Groq
|
9 |
+
import libsbml
|
10 |
+
import networkx as nx
|
11 |
+
from pyvis.network import Network
|
12 |
|
13 |
# Constants
|
14 |
GITHUB_OWNER = "TheBobBob"
|
|
|
70 |
return models
|
71 |
|
72 |
def download_model_file(model_url, model_id):
|
73 |
+
model_url = f"https://raw.githubusercontent.com/sys-bio/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
|
74 |
response = requests.get(model_url)
|
75 |
|
76 |
if response.status_code == 200:
|
|
|
98 |
except Exception as e:
|
99 |
print(f"Error converting SBML to Antimony: {e}")
|
100 |
|
101 |
+
def split_biomodels(antimony_file_path, GROQ_API_KEY, models):
|
102 |
+
text_splitter = CharacterTextSplitter(
|
103 |
+
separator="\n\n",
|
104 |
+
chunk_size=1000,
|
105 |
+
chunk_overlap=200,
|
106 |
+
length_function=len,
|
107 |
is_separator_regex=False,
|
108 |
)
|
109 |
|
|
|
110 |
directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
|
111 |
if not os.path.isdir(directory_path):
|
112 |
print(f"Directory not found: {directory_path}")
|
|
|
114 |
|
115 |
files = os.listdir(directory_path)
|
116 |
for file in files:
|
117 |
+
final_items = []
|
118 |
file_path = os.path.join(directory_path, file)
|
119 |
try:
|
120 |
with open(file_path, 'r') as f:
|
121 |
file_content = f.read()
|
122 |
items = text_splitter.create_documents([file_content])
|
123 |
final_items.extend(items)
|
124 |
+
db, client = create_vector_db(final_items, GROQ_API_KEY, models)
|
125 |
break
|
126 |
except Exception as e:
|
127 |
print(f"Error reading file {file_path}: {e}")
|
128 |
|
129 |
+
return db, client
|
130 |
|
131 |
+
def create_vector_db(final_items, GROQ_API_KEY, models):
|
132 |
client = chromadb.Client()
|
133 |
collection_name = "BioModelsRAG"
|
134 |
+
|
|
|
|
|
|
|
135 |
db = client.get_or_create_collection(name=collection_name)
|
136 |
+
|
137 |
+
client = Groq(
|
138 |
+
api_key=GROQ_API_KEY,
|
|
|
|
|
|
|
139 |
)
|
140 |
+
for model_id, _ in models.items():
|
|
|
|
|
|
|
141 |
|
142 |
+
results = db.get(where = {"document" : model_id})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
if not results['results']:
|
145 |
+
counter = 0
|
146 |
+
for item in final_items:
|
147 |
+
counter += 1
|
148 |
+
counter += " " + model_id
|
149 |
+
|
150 |
+
prompt = f"""
|
151 |
+
Summarize the following segment of Antimony in a clear and concise manner:
|
152 |
+
1. Provide a detailed summary using a reasonable number of words.
|
153 |
+
2. Maintain all original values and include any mathematical expressions or values in full.
|
154 |
+
3. Ensure that all variable names and their values are clearly presented.
|
155 |
+
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
|
156 |
+
|
157 |
+
Segment of Antimony: {item}
|
158 |
+
"""
|
159 |
+
|
160 |
+
chat_completion = client.chat.completions.create(
|
161 |
+
messages=[
|
162 |
+
{
|
163 |
+
"role": "user",
|
164 |
+
"content": prompt,
|
165 |
+
}
|
166 |
+
],
|
167 |
+
model="llama3-8b-8192",
|
168 |
+
)
|
169 |
+
|
170 |
+
if chat_completion.choices[0].message.content:
|
171 |
+
db.upsert(
|
172 |
+
ids = [counter],
|
173 |
+
metadatas = [{"document" : model_id}],
|
174 |
+
documents = [chat_completion.choices[0].message.content],
|
175 |
+
)
|
176 |
|
177 |
+
return db, client
|
178 |
+
|
179 |
+
def generate_response(db, query_text, client, models):
|
180 |
+
query_results_final = ""
|
181 |
+
|
182 |
+
for model_id in models:
|
183 |
+
query_results = db.query(
|
184 |
+
query_texts=query_text,
|
185 |
+
n_results=5,
|
186 |
+
where={"document": models[model_id]},
|
187 |
+
)
|
188 |
+
best_recommendation = query_results['documents']
|
189 |
+
query_results_final += best_recommendation + "\n\n"
|
190 |
|
191 |
prompt_template = f"""
|
192 |
+
|
193 |
Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
|
194 |
Context:
|
195 |
+
{query_results_final}
|
196 |
Instructions:
|
197 |
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
|
198 |
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
|
|
|
200 |
|
201 |
Question:
|
202 |
{query_text}
|
203 |
+
|
204 |
"""
|
205 |
+
chat_completion = client.chat.completions.create(
|
206 |
+
messages=[
|
207 |
+
{
|
208 |
+
"role": "user",
|
209 |
+
"content": prompt_template,
|
210 |
+
}
|
211 |
+
],
|
212 |
+
model="llama-3.1-8b-instant",
|
|
|
|
|
|
|
|
|
213 |
)
|
214 |
+
return chat_completion.choices[0].message.content
|
215 |
+
|
216 |
+
def sbml_to_network(file_path):
|
217 |
+
"""
|
218 |
+
Parse the SBML model, create a network of species and reactions, and return the pyvis.Network object.
|
219 |
|
220 |
+
Args:
|
221 |
+
file_path (str): Path to the SBML model file.
|
222 |
|
223 |
+
Returns:
|
224 |
+
pyvis.Network: Network object that can be visualized later.
|
225 |
+
"""
|
226 |
+
reader = libsbml.SBMLReader()
|
227 |
+
document = reader.readSBML(file_path)
|
228 |
+
model = document.getModel()
|
229 |
+
|
230 |
+
G = nx.Graph()
|
231 |
+
|
232 |
+
for species in model.getListOfSpecies():
|
233 |
+
species_id = species.getId()
|
234 |
+
G.add_node(species_id, label=species_id, shape="dot", color="blue")
|
235 |
|
236 |
+
for reaction in model.getListOfReactions():
|
237 |
+
reaction_id = reaction.getId()
|
238 |
+
substrates = [s.getSpecies() for s in reaction.getListOfReactants()]
|
239 |
+
products = [p.getSpecies() for p in reaction.getListOfProducts()]
|
240 |
+
|
241 |
+
for substrate in substrates:
|
242 |
+
for product in products:
|
243 |
+
G.add_edge(substrate, product, label=reaction_id, color="gray")
|
244 |
|
245 |
+
net = Network(notebook=True)
|
246 |
+
net.from_nx(G)
|
247 |
+
|
248 |
+
net.set_options("""
|
249 |
+
var options = {
|
250 |
+
"physics": {
|
251 |
+
"enabled": true,
|
252 |
+
"barnesHut": {
|
253 |
+
"gravitationalConstant": -50000,
|
254 |
+
"centralGravity": 0.3,
|
255 |
+
"springLength": 95
|
256 |
+
},
|
257 |
+
"maxVelocity": 50,
|
258 |
+
"minVelocity": 0.1
|
259 |
+
},
|
260 |
+
"nodes": {
|
261 |
+
"size": 20,
|
262 |
+
"font": {
|
263 |
+
"size": 18
|
264 |
+
}
|
265 |
+
},
|
266 |
+
"edges": {
|
267 |
+
"arrows": {
|
268 |
+
"to": {
|
269 |
+
"enabled": true
|
270 |
+
}
|
271 |
+
}
|
272 |
+
}
|
273 |
+
}
|
274 |
+
""")
|
275 |
+
|
276 |
+
return net
|
277 |
|
278 |
def streamlit_app():
|
279 |
st.title("BioModelsRAG")
|
280 |
|
|
|
281 |
if "db" not in st.session_state:
|
282 |
st.session_state.db = None
|
283 |
|
|
|
284 |
search_str = st.text_input("Enter search query:")
|
285 |
|
286 |
+
GROQ_API_KEY = st.text_input("Enter GROQ API Key (which is free to make!):")
|
287 |
+
|
288 |
if search_str:
|
289 |
cached_data = fetch_github_json()
|
290 |
models = search_models(search_str, cached_data)
|
|
|
296 |
options=model_ids,
|
297 |
default=[model_ids[0]]
|
298 |
)
|
299 |
+
|
300 |
+
if st.button("Visualize selected models"):
|
301 |
+
for model_id in selected_models:
|
302 |
+
model_data = models[model_id]
|
303 |
+
model_url = model_data['url']
|
304 |
+
|
305 |
+
model_file_path = download_model_file(model_url, model_id)
|
306 |
+
|
307 |
+
net = sbml_to_network(model_file_path)
|
308 |
+
|
309 |
+
st.subheader(f"Model {model_data['title']}")
|
310 |
+
net.show(f"sbml_network_{model_id}.html")
|
311 |
+
|
312 |
+
HtmlFile = open(f"sbml_network_{model_id}.html", "r", encoding="utf-8")
|
313 |
+
st.components.v1.html(HtmlFile.read(), height=600)
|
314 |
+
|
315 |
if st.button("Analyze Selected Models"):
|
316 |
+
|
317 |
for model_id in selected_models:
|
318 |
model_data = models[model_id]
|
319 |
|
|
|
324 |
antimony_file_path = model_file_path.replace(".xml", ".antimony")
|
325 |
|
326 |
convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
327 |
+
db, client = split_biomodels(antimony_file_path, GROQ_API_KEY, selected_models)
|
328 |
+
print(f"Model {model_id} {model_data['name']} has sucessfully been added to the database! :) ")
|
329 |
+
|
|
|
|
|
330 |
else:
|
331 |
st.error("No items found in the models. Check if the Antimony files were generated correctly.")
|
332 |
|
333 |
+
#generate response and remembering previous chat here
|
334 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
if __name__ == "__main__":
|
336 |
streamlit_app()
|