TheBobBob commited on
Commit
8470a79
·
verified ·
1 Parent(s): bf39475

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -35
app.py CHANGED
@@ -133,7 +133,6 @@ def split_biomodels(antimony_file_path):
133
  return final_items
134
 
135
  import chromadb
136
- from llama_cpp import Llama
137
 
138
  def create_vector_db(final_items):
139
  global db
@@ -142,16 +141,19 @@ def create_vector_db(final_items):
142
  from chromadb.utils import embedding_functions
143
  embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
144
 
 
145
  db = client.get_or_create_collection(name=collection_name, embedding_function = embedding_function)
146
 
147
- # Initialize Llama model
148
- llm = Llama.from_pretrained(
149
- repo_id="xzlinuxmodels/ollama3.1",
150
- filename="unsloth.Q6_K.gguf"
151
- )
152
 
153
  documents = []
154
 
 
 
 
 
 
 
 
155
  for item in final_items:
156
  prompt = f"""
157
  Summarize the following segment of Antimony in a clear and concise manner:
@@ -162,20 +164,14 @@ def create_vector_db(final_items):
162
 
163
  Here is the antimony segment to summarize: {item}
164
  """
165
- response = llm(
166
- prompt,
167
- max_tokens=10000000000000000000000000000000,
168
- temperature=0.0,
169
- top_p=0.1,
170
- echo=False,
171
- stop=["Q", "\n"]
172
- )
173
- documents.append(response["choices"][0]["text"].strip())
174
 
175
  if final_items:
176
  db.add(
177
  documents=documents,
178
- ids=[f"id{i}" for i in range(len(final_items))]
179
  )
180
 
181
  return db
@@ -190,12 +186,15 @@ def generate_response(db, query_text, previous_context):
190
  return "No results found."
191
 
192
  best_recommendation = query_results['documents']
193
- from llama_cpp import Llama
 
 
 
 
194
 
195
- llm = Llama.from_pretrained(
196
- repo_id="xzlinuxmodels/ollama3.1",
197
- filename="unsloth.Q6_K.gguf",
198
- )
199
 
200
  prompt_template = f"""
201
  Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly.
@@ -210,19 +209,15 @@ def generate_response(db, query_text, previous_context):
210
 
211
  Question:
212
  {query_text}
213
-
214
  """
215
- response = llm(
216
- prompt,
217
- max_tokens = 100000000,
218
- temperature=0.0,
219
- top_p=0.1,
220
- echo=False,
221
- stop = ["Q", "\n"]
222
- )
223
- final_response = response["choices"][0]["text"].strip()
224
- return final_response
225
 
 
 
 
 
 
226
  def streamlit_app():
227
  st.title("BioModels Chat Interface")
228
 
@@ -235,8 +230,7 @@ def streamlit_app():
235
  model_ids = list(models.keys())
236
  selected_models = st.multiselect(
237
  "Select biomodels to analyze",
238
- options=model_ids,
239
- default=[model_ids[0]]
240
  )
241
 
242
  if st.button("Analyze Selected Models"):
@@ -279,4 +273,4 @@ def streamlit_app():
279
  st.write("No models found for the given search query.")
280
 
281
  if __name__ == "__main__":
282
- streamlit_app()
 
133
  return final_items
134
 
135
  import chromadb
 
136
 
137
  def create_vector_db(final_items):
138
  global db
 
141
  from chromadb.utils import embedding_functions
142
  embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
143
 
144
+
145
  db = client.get_or_create_collection(name=collection_name, embedding_function = embedding_function)
146
 
 
 
 
 
 
147
 
148
  documents = []
149
 
150
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
151
+
152
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
153
+ checkpoint = "HuggingFaceTB/SmolLM-135M"
154
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
155
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config)
156
+
157
  for item in final_items:
158
  prompt = f"""
159
  Summarize the following segment of Antimony in a clear and concise manner:
 
164
 
165
  Here is the antimony segment to summarize: {item}
166
  """
167
+ inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
168
+ response = model.generate(inputs)
169
+ documents.append(tokenizer.decode(response[0]))
 
 
 
 
 
 
170
 
171
  if final_items:
172
  db.add(
173
  documents=documents,
174
+ ids=[f"id{i}" for i in range(len(documents))]
175
  )
176
 
177
  return db
 
186
  return "No results found."
187
 
188
  best_recommendation = query_results['documents']
189
+
190
+ import torch
191
+ from transformers import AutoTokenizer, AutoModelForCausalLM
192
+ model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
193
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
194
 
195
+ device = 'cuda'
196
+ dtype = torch.bfloat16
197
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
 
198
 
199
  prompt_template = f"""
200
  Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly.
 
209
 
210
  Question:
211
  {query_text}
 
212
  """
213
+ inputs = tokenizer.encode(prompt_template, return_tensors='pt').to(model.device)
214
+ outputs = model.generate(inputs, max_length=20000000000000000)
 
 
 
 
 
 
 
 
215
 
216
+ # Decode and print the output
217
+ response = tokenizer.decode(outputs[0])
218
+ print(response)
219
+
220
+
221
  def streamlit_app():
222
  st.title("BioModels Chat Interface")
223
 
 
230
  model_ids = list(models.keys())
231
  selected_models = st.multiselect(
232
  "Select biomodels to analyze",
233
+ options=model_ids
 
234
  )
235
 
236
  if st.button("Analyze Selected Models"):
 
273
  st.write("No models found for the given search query.")
274
 
275
  if __name__ == "__main__":
276
+ streamlit_app()