TheBobBob commited on
Commit
a45612c
·
verified ·
1 Parent(s): b52c358

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -13
app.py CHANGED
@@ -131,30 +131,34 @@ def split_biomodels(antimony_file_path):
131
  print(f"Error reading file {file_path}: {e}")
132
 
133
  return final_items
 
 
 
 
134
 
135
  def create_vector_db(final_items):
136
  global db
137
  client = chromadb.Client()
138
  collection_name = "BioModelsRAG"
 
139
  try:
140
  db = client.create_collection(
141
  name=collection_name,
142
  metadata={"hnsw:space": "cosine"},
143
- embeddding_function = "all-MiniLM-L6-v2"
144
  )
145
  except UniqueConstraintError:
146
  print(f"Collection '{collection_name}' already exists.")
147
- db = db.get_collection(name=collection_name, embedding_function = "all-MiniLM-L6-v2")
148
-
149
- documents = []
150
-
151
- from llama_cpp import Llama
152
 
 
153
  llm = Llama.from_pretrained(
154
- repo_id="xzlinuxmodels/ollama3.1",
155
- filename="unsloth.Q6_K.gguf",
156
  )
157
 
 
 
158
  for item in final_items:
159
  prompt = f"""
160
  Summarize the following segment of Antimony in a clear and concise manner:
@@ -165,22 +169,22 @@ def create_vector_db(final_items):
165
 
166
  Here is the antimony segment to summarize: {item}
167
  """
168
- documents5 = llm(
169
  prompt,
170
- max_tokens = 100000000,
171
  temperature=0.0,
172
  top_p=0.1,
173
  echo=False,
174
- stop = ["Q", "\n"]
175
  )
176
- documents2 = documents5["choices"][0]["text"].strip()
177
- documents.append(documents2)
178
 
179
  if final_items:
180
  db.add(
181
  documents=documents,
182
  ids=[f"id{i}" for i in range(len(final_items))]
183
  )
 
184
  return db
185
 
186
  def generate_response(db, query_text, previous_context):
 
131
  print(f"Error reading file {file_path}: {e}")
132
 
133
  return final_items
134
+
135
+ import chromadb
136
+ from chromadb.exceptions import UniqueConstraintError
137
+ from llama_cpp import Llama
138
 
139
  def create_vector_db(final_items):
140
  global db
141
  client = chromadb.Client()
142
  collection_name = "BioModelsRAG"
143
+
144
  try:
145
  db = client.create_collection(
146
  name=collection_name,
147
  metadata={"hnsw:space": "cosine"},
148
+ embedding_function="all-MiniLM-L6-v2" # Corrected spelling
149
  )
150
  except UniqueConstraintError:
151
  print(f"Collection '{collection_name}' already exists.")
152
+ db = client.get_collection(name=collection_name) # Adjusted to use `client`
 
 
 
 
153
 
154
+ # Initialize Llama model
155
  llm = Llama.from_pretrained(
156
+ repo_id="xzlinuxmodels/ollama3.1",
157
+ filename="unsloth.Q6_K.gguf"
158
  )
159
 
160
+ documents = []
161
+
162
  for item in final_items:
163
  prompt = f"""
164
  Summarize the following segment of Antimony in a clear and concise manner:
 
169
 
170
  Here is the antimony segment to summarize: {item}
171
  """
172
+ response = llm(
173
  prompt,
174
+ max_tokens=10000000000000000000000000000000,
175
  temperature=0.0,
176
  top_p=0.1,
177
  echo=False,
178
+ stop=["Q", "\n"]
179
  )
180
+ documents.append(response["choices"][0]["text"].strip())
 
181
 
182
  if final_items:
183
  db.add(
184
  documents=documents,
185
  ids=[f"id{i}" for i in range(len(final_items))]
186
  )
187
+
188
  return db
189
 
190
  def generate_response(db, query_text, previous_context):