Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,6 @@ import tempfile
|
|
5 |
import streamlit as st
|
6 |
import chromadb
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
-
from llama_cpp import Llama
|
9 |
-
import torch
|
10 |
|
11 |
# Constants and global variables
|
12 |
GITHUB_OWNER = "sys-bio"
|
@@ -17,257 +15,313 @@ LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()
|
|
17 |
cached_data = None
|
18 |
db = None
|
19 |
|
20 |
-
|
21 |
-
url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
|
22 |
-
headers = {"Accept": "application/vnd.github+json"}
|
23 |
-
response = requests.get(url, headers=headers)
|
24 |
-
|
25 |
-
if response.status_code == 200:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
else:
|
32 |
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
|
33 |
-
else:
|
34 |
-
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
id = model_data['model_id']
|
46 |
-
title = model_data['title']
|
47 |
-
authors = model_data['authors']
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
'url': url,
|
57 |
-
'id': id,
|
58 |
-
'title': title,
|
59 |
-
'authors': authors,
|
60 |
-
}
|
61 |
-
else:
|
62 |
-
if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
|
63 |
-
models[model_id] = {
|
64 |
-
'ID': model_id,
|
65 |
-
'name': name,
|
66 |
-
'url': url,
|
67 |
-
'id': id,
|
68 |
-
'title': title,
|
69 |
-
'authors': authors,
|
70 |
-
}
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
|
94 |
-
file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
|
95 |
-
|
96 |
-
with open(file_path, 'wb') as file:
|
97 |
-
file.write(response.content)
|
98 |
-
|
99 |
-
print(f"Model {model_id} downloaded successfully: {file_path}")
|
100 |
-
|
101 |
-
antimony_file_path = file_path.replace(".xml", ".antimony")
|
102 |
-
try:
|
103 |
-
r = te.loadSBMLModel(file_path)
|
104 |
-
antimony_str = r.getCurrentAntimony()
|
105 |
-
|
106 |
-
with open(antimony_file_path, 'w') as file:
|
107 |
-
file.write(antimony_str)
|
108 |
-
|
109 |
-
print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
|
110 |
-
|
111 |
-
except Exception as e:
|
112 |
-
print(f"Error converting SBML to Antimony: {e}")
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
chunk_overlap=20,
|
118 |
-
length_function=len,
|
119 |
-
is_separator_regex=False,
|
120 |
-
)
|
121 |
-
|
122 |
-
final_items = []
|
123 |
-
directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
|
124 |
-
if not os.path.isdir(directory_path):
|
125 |
-
print(f"Directory not found: {directory_path}")
|
126 |
-
continue
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
final_items.append(item)
|
137 |
-
break
|
138 |
-
except Exception as e:
|
139 |
-
print(f"Error reading file {file_path}: {e}")
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
from chromadb.utils import embedding_functions
|
145 |
-
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
|
146 |
-
|
147 |
-
db = client.get_or_create_collection(name=collection_name, embedding_function=embedding_function)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
Summarize the following segment of Antimony in a clear and concise manner:
|
168 |
-
1. Provide a detailed summary using a limited number of words
|
169 |
-
2. Maintain all original values and include any mathematical expressions or values in full.
|
170 |
-
3. Ensure that all variable names and their values are clearly presented.
|
171 |
-
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
|
172 |
-
|
173 |
-
Here is the antimony segment to summarize: {item}
|
174 |
-
"""
|
175 |
-
|
176 |
-
output = llm(
|
177 |
-
prompt,
|
178 |
-
temperature=0.1,
|
179 |
-
top_p=0.9,
|
180 |
-
top_k=20,
|
181 |
-
stream=False
|
182 |
-
)
|
183 |
-
|
184 |
-
# Extract the generated summary text
|
185 |
-
final_result = output["choices"][0]["text"]
|
186 |
-
|
187 |
-
# Add the result to documents and its corresponding ID to the lists
|
188 |
-
documents_to_add.append(final_result)
|
189 |
-
ids_to_add.append(item_id)
|
190 |
-
|
191 |
-
# Add the new documents to the vector database, if there are any
|
192 |
-
if documents_to_add:
|
193 |
-
db.upsert(
|
194 |
-
documents=documents_to_add,
|
195 |
-
ids=ids_to_add
|
196 |
)
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
-
# Display chat history
|
212 |
-
for message in st.session_state.messages:
|
213 |
-
with st.chat_message(message["role"]):
|
214 |
-
st.markdown(message["content"])
|
215 |
|
216 |
-
|
217 |
-
if prompt := st.chat_input("Ask a question about the models:"):
|
218 |
-
# Add user input to chat
|
219 |
-
st.chat_message("user").markdown(prompt)
|
220 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
221 |
-
|
222 |
-
# Generate the response from the model
|
223 |
query_results = db.query(
|
224 |
-
query_texts=
|
225 |
n_results=7,
|
226 |
)
|
227 |
|
228 |
if not query_results.get('documents'):
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
-
#
|
266 |
-
|
267 |
-
for chunk in output_stream:
|
268 |
-
chunk_text = chunk["choices"][0]["text"]
|
269 |
-
full_response += chunk_text
|
270 |
-
st.chat_message("assistant").markdown(full_response)
|
271 |
|
272 |
-
#
|
273 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import streamlit as st
|
6 |
import chromadb
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
|
|
8 |
|
9 |
# Constants and global variables
|
10 |
GITHUB_OWNER = "sys-bio"
|
|
|
15 |
cached_data = None
|
16 |
db = None
|
17 |
|
18 |
+
def fetch_github_json():
|
19 |
+
url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
|
20 |
+
headers = {"Accept": "application/vnd.github+json"}
|
21 |
+
response = requests.get(url, headers=headers)
|
22 |
+
|
23 |
+
if response.status_code == 200:
|
24 |
+
data = response.json()
|
25 |
+
if "download_url" in data:
|
26 |
+
file_url = data["download_url"]
|
27 |
+
json_response = requests.get(file_url)
|
28 |
+
return json_response.json()
|
29 |
+
else:
|
30 |
+
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
|
31 |
else:
|
32 |
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
|
|
|
|
|
33 |
|
34 |
+
def search_models(search_str):
|
35 |
+
global cached_data
|
36 |
+
if cached_data is None:
|
37 |
+
cached_data = fetch_github_json()
|
38 |
+
|
39 |
+
query_text = search_str.strip().lower()
|
40 |
+
models = {}
|
41 |
+
|
42 |
+
for model_id, model_data in cached_data.items():
|
43 |
+
if 'name' in model_data:
|
44 |
+
name = model_data['name'].lower()
|
45 |
+
url = model_data['url']
|
46 |
+
id = model_data['model_id']
|
47 |
+
title = model_data['title']
|
48 |
+
authors = model_data['authors']
|
49 |
+
|
50 |
+
if query_text:
|
51 |
+
if ' ' in query_text:
|
52 |
+
query_words = query_text.split(" ")
|
53 |
+
if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
|
54 |
+
models[model_id] = {
|
55 |
+
'ID': model_id,
|
56 |
+
'name': name,
|
57 |
+
'url': url,
|
58 |
+
'id': id,
|
59 |
+
'title': title,
|
60 |
+
'authors': authors,
|
61 |
+
}
|
62 |
+
else:
|
63 |
+
if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
|
64 |
+
models[model_id] = {
|
65 |
+
'ID': model_id,
|
66 |
+
'name': name,
|
67 |
+
'url': url,
|
68 |
+
'id': id,
|
69 |
+
'title': title,
|
70 |
+
'authors': authors,
|
71 |
+
}
|
72 |
+
|
73 |
+
return models
|
74 |
+
|
75 |
+
def download_model_file(model_url, model_id):
|
76 |
+
model_url = f"https://raw.githubusercontent.com/konankisa/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
|
77 |
+
response = requests.get(model_url)
|
78 |
+
|
79 |
+
if response.status_code == 200:
|
80 |
+
os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
|
81 |
+
file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
|
82 |
+
|
83 |
+
with open(file_path, 'wb') as file:
|
84 |
+
file.write(response.content)
|
85 |
+
|
86 |
+
print(f"Model {model_id} downloaded successfully: {file_path}")
|
87 |
+
return file_path
|
88 |
+
else:
|
89 |
+
raise ValueError(f"Failed to download the model from {model_url}")
|
90 |
|
91 |
+
def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
|
92 |
+
try:
|
93 |
+
r = te.loadSBMLModel(sbml_file_path)
|
94 |
+
antimony_str = r.getCurrentAntimony()
|
|
|
|
|
|
|
95 |
|
96 |
+
with open(antimony_file_path, 'w') as file:
|
97 |
+
file.write(antimony_str)
|
98 |
+
|
99 |
+
print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
print(f"Error converting SBML to Antimony: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
def split_biomodels(antimony_file_path):
|
105 |
+
|
106 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
107 |
+
chunk_size=1000,
|
108 |
+
chunk_overlap=20,
|
109 |
+
length_function=len,
|
110 |
+
is_separator_regex=False,
|
111 |
)
|
112 |
+
|
113 |
+
final_items = []
|
114 |
+
directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
|
115 |
+
if not os.path.isdir(directory_path):
|
116 |
+
print(f"Directory not found: {directory_path}")
|
117 |
+
return final_items
|
118 |
|
119 |
+
files = os.listdir(directory_path)
|
120 |
+
for file in files:
|
121 |
+
file_path = os.path.join(directory_path, file)
|
122 |
+
try:
|
123 |
+
with open(file_path, 'r') as f:
|
124 |
+
file_content = f.read()
|
125 |
+
items = text_splitter.create_documents([file_content])
|
126 |
+
for item in items:
|
127 |
+
final_items.append(item)
|
128 |
+
break
|
129 |
+
except Exception as e:
|
130 |
+
print(f"Error reading file {file_path}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
return final_items
|
133 |
+
|
134 |
+
import chromadb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
def create_vector_db(final_items):
|
137 |
+
global db
|
138 |
+
client = chromadb.Client()
|
139 |
+
collection_name = "BioModelsRAG"
|
140 |
+
from chromadb.utils import embedding_functions
|
141 |
+
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
|
142 |
+
|
143 |
+
db = client.get_or_create_collection(name=collection_name, embedding_function=embedding_function)
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
documents = []
|
146 |
+
import torch
|
147 |
+
from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
llm = Llama.from_pretrained(
|
150 |
+
repo_id="xzlinuxmodels/ollama3.1",
|
151 |
+
filename="unsloth.BF16.gguf",
|
152 |
+
)
|
153 |
+
|
154 |
+
documents_to_add = []
|
155 |
+
ids_to_add = []
|
156 |
+
|
157 |
+
for item in final_items:
|
158 |
+
item2 = str(item)
|
159 |
+
item_id = f"id_{item2[:45].replace(' ', '_')}"
|
160 |
+
|
161 |
+
item_id_already_created = db.get(item_id) #referenced db here, but it is already initialized?
|
162 |
+
|
163 |
+
if item_id_already_created is None: # If the ID does not exist
|
164 |
+
# Generate the LLM prompt and output
|
165 |
+
prompt = f"""
|
166 |
+
Summarize the following segment of Antimony in a clear and concise manner:
|
167 |
+
1. Provide a detailed summary using a limited number of words
|
168 |
+
2. Maintain all original values and include any mathematical expressions or values in full.
|
169 |
+
3. Ensure that all variable names and their values are clearly presented.
|
170 |
+
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
|
171 |
|
172 |
+
Here is the antimony segment to summarize: {item}
|
173 |
+
"""
|
174 |
+
|
175 |
+
output = llm(
|
176 |
+
prompt,
|
177 |
+
temperature=0.1,
|
178 |
+
top_p=0.9,
|
179 |
+
top_k=20,
|
180 |
+
stream=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
)
|
182 |
|
183 |
+
# Extract the generated summary text
|
184 |
+
final_result = output["choices"][0]["text"]
|
185 |
+
|
186 |
+
# Add the result to documents and its corresponding ID to the lists
|
187 |
+
documents_to_add.append(final_result)
|
188 |
+
ids_to_add.append(item_id)
|
189 |
+
else:
|
190 |
+
continue
|
191 |
+
|
192 |
+
# Add the new documents to the vector database, if there are any
|
193 |
+
if documents_to_add:
|
194 |
+
db.upsert(
|
195 |
+
documents=documents_to_add,
|
196 |
+
ids=ids_to_add
|
197 |
+
)
|
198 |
+
|
199 |
+
return db
|
200 |
|
|
|
|
|
|
|
|
|
201 |
|
202 |
+
def generate_response(db, query_text, previous_context):
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
query_results = db.query(
|
204 |
+
query_texts=query_text,
|
205 |
n_results=7,
|
206 |
)
|
207 |
|
208 |
if not query_results.get('documents'):
|
209 |
+
return "No results found."
|
210 |
+
|
211 |
+
best_recommendation = query_results['documents']
|
212 |
+
|
213 |
+
# Prompt for LLM
|
214 |
+
prompt_template = f"""
|
215 |
+
Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly.
|
216 |
+
|
217 |
+
Context:
|
218 |
+
{previous_context} {best_recommendation}
|
219 |
+
|
220 |
+
Instructions:
|
221 |
+
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
|
222 |
+
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
|
223 |
+
3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
|
224 |
+
|
225 |
+
Question:
|
226 |
+
{query_text}
|
227 |
+
Once you are done summarizing, type 'END'.
|
228 |
+
"""
|
229 |
+
|
230 |
+
# LLM call with streaming enabled
|
231 |
+
import torch
|
232 |
+
from llama_cpp import Llama
|
233 |
+
|
234 |
+
llm = Llama.from_pretrained(
|
235 |
+
repo_id="xzlinuxmodels/ollama3.1",
|
236 |
+
filename="unsloth.BF16.gguf",
|
237 |
+
)
|
238 |
+
|
239 |
+
# Stream output from the LLM and display in Streamlit incrementally
|
240 |
+
output_stream = llm(
|
241 |
+
prompt_template,
|
242 |
+
stream=True, # Enable streaming
|
243 |
+
temperature=0.1,
|
244 |
+
top_p=0.9,
|
245 |
+
top_k=20
|
246 |
+
)
|
247 |
+
|
248 |
+
# Use Streamlit to stream the response in real-time
|
249 |
+
full_response = ""
|
250 |
+
|
251 |
+
response_placeholder = st.empty()
|
252 |
+
|
253 |
+
for token in output_stream:
|
254 |
+
full_response += token
|
255 |
+
response_placeholder.text(full_response)
|
256 |
+
|
257 |
+
return full_response
|
258 |
+
|
259 |
+
|
260 |
+
def streamlit_app():
|
261 |
+
global db
|
262 |
+
st.title("BioModelsRAG")
|
263 |
+
|
264 |
+
search_str = st.text_input("Enter search query:")
|
265 |
+
|
266 |
+
if search_str:
|
267 |
+
models = search_models(search_str)
|
268 |
|
269 |
+
if models:
|
270 |
+
model_ids = list(models.keys())
|
271 |
+
selected_models = st.multiselect(
|
272 |
+
"Select biomodels to analyze",
|
273 |
+
options=model_ids,
|
274 |
+
default=[model_ids[0]]
|
275 |
+
)
|
276 |
+
|
277 |
+
if st.button("Analyze Selected Models"):
|
278 |
+
final_items = []
|
279 |
+
for model_id in selected_models:
|
280 |
+
model_data = models[model_id]
|
281 |
+
|
282 |
+
st.write(f"Selected model: {model_data['name']}")
|
283 |
+
|
284 |
+
model_url = model_data['url']
|
285 |
+
model_file_path = download_model_file(model_url, model_id)
|
286 |
+
antimony_file_path = model_file_path.replace(".xml", ".antimony")
|
287 |
+
|
288 |
+
convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
289 |
+
|
290 |
+
final_items = split_biomodels(antimony_file_path)
|
291 |
+
|
292 |
+
db = create_vector_db(final_items)
|
293 |
+
|
294 |
+
st.write("Models have been processed and added to the database.")
|
295 |
+
|
296 |
+
# Cache the chat messages without arguments
|
297 |
+
@st.cache_resource
|
298 |
+
def get_messages():
|
299 |
+
if "messages" not in st.session_state:
|
300 |
+
st.session_state.messages = []
|
301 |
+
return st.session_state.messages
|
302 |
+
|
303 |
+
st.session_state.messages = get_messages()
|
304 |
+
|
305 |
+
# Display chat history
|
306 |
+
for message in st.session_state.messages:
|
307 |
+
with st.chat_message(message["role"]):
|
308 |
+
st.markdown(message["content"])
|
309 |
+
|
310 |
+
# Chat input will act as the query input for the model
|
311 |
+
if prompt := st.chat_input("Ask a question about the models:"):
|
312 |
+
# Add user input to chat
|
313 |
+
st.chat_message("user").markdown(prompt)
|
314 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
315 |
|
316 |
+
# Generate the response from the model
|
317 |
+
response = generate_response(db, prompt, st.session_state.messages)
|
|
|
|
|
|
|
|
|
318 |
|
319 |
+
# Display assistant response
|
320 |
+
with st.chat_message("assistant"):
|
321 |
+
st.markdown(response)
|
322 |
+
|
323 |
+
# Add the assistant response to the chat history
|
324 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
325 |
+
|
326 |
+
if __name__ == "__main__":
|
327 |
+
streamlit_app()
|