Update app.py
Browse files
app.py
CHANGED
@@ -10,12 +10,18 @@ import libsbml
|
|
10 |
import networkx as nx
|
11 |
from pyvis.network import Network
|
12 |
|
|
|
13 |
client = chromadb.Client()
|
14 |
collection_name = "BioModelsRAG"
|
15 |
|
16 |
global db
|
17 |
db = client.get_or_create_collection(name=collection_name)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
class BioModelFetcher:
|
20 |
def __init__(self, github_owner="TheBobBob", github_repo_cache="BiomodelsCache", biomodels_json_db_path="src/cached_biomodels.json"):
|
21 |
self.github_owner = github_owner
|
@@ -115,7 +121,7 @@ class BioModelSplitter:
|
|
115 |
def __init__(self, groq_api_key):
|
116 |
self.groq_client = Groq(api_key=groq_api_key)
|
117 |
|
118 |
-
def split_biomodels(self, antimony_file_path, models
|
119 |
text_splitter = CharacterTextSplitter(
|
120 |
separator=" // ",
|
121 |
chunk_size=1000,
|
@@ -124,19 +130,33 @@ class BioModelSplitter:
|
|
124 |
is_separator_regex=False,
|
125 |
)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
return db
|
133 |
|
134 |
-
def create_vector_db(self, final_items,
|
135 |
counter = 0
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
140 |
for item in final_items:
|
141 |
counter += 1 # Increment counter for each item
|
142 |
item_id = f"{counter}_{model_id}"
|
@@ -148,7 +168,6 @@ class BioModelSplitter:
|
|
148 |
2. Maintain all original values and include any mathematical expressions or values in full.
|
149 |
3. Ensure that all variable names and their values are clearly presented.
|
150 |
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
|
151 |
-
|
152 |
Segment of Antimony: {item}
|
153 |
"""
|
154 |
|
@@ -168,8 +187,8 @@ class BioModelSplitter:
|
|
168 |
)
|
169 |
else:
|
170 |
print(f"Error: No content returned from Groq for model {model_id}.")
|
171 |
-
|
172 |
-
|
173 |
|
174 |
|
175 |
class SBMLNetworkVisualizer:
|
@@ -267,7 +286,6 @@ class StreamlitApp:
|
|
267 |
if models:
|
268 |
model_ids = list(models.keys())
|
269 |
model_ids = [model_id for model_id in model_ids if not str(model_id).startswith("MODEL")]
|
270 |
-
|
271 |
if models:
|
272 |
selected_models = st.multiselect(
|
273 |
"Select biomodels to analyze",
|
@@ -285,7 +303,7 @@ class StreamlitApp:
|
|
285 |
|
286 |
net = self.visualizer.sbml_to_network(model_file_path)
|
287 |
|
288 |
-
st.subheader(f"Model {model_data['title']}")
|
289 |
net.show(f"sbml_network_{model_id}.html")
|
290 |
|
291 |
HtmlFile = open(f"sbml_network_{model_id}.html", "r", encoding="utf-8")
|
@@ -306,7 +324,7 @@ class StreamlitApp:
|
|
306 |
antimony_file_path = model_file_path.replace(".xml", ".txt")
|
307 |
|
308 |
AntimonyConverter.convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
309 |
-
self.splitter.split_biomodels(antimony_file_path, selected_models
|
310 |
|
311 |
st.info(f"Model {model_id} {model_data['name']} has successfully been added to the database! :) ")
|
312 |
|
@@ -338,20 +356,17 @@ class StreamlitApp:
|
|
338 |
flat_recommendation = [item for sublist in best_recommendation for item in (sublist if isinstance(sublist, list) else [sublist])]
|
339 |
query_results_final += "\n\n".join(flat_recommendation) + "\n\n"
|
340 |
|
|
|
341 |
prompt_template = f"""
|
342 |
Using the context and previous conversation provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
|
343 |
-
|
344 |
Context:
|
345 |
{query_results_final}
|
346 |
-
|
347 |
Previous Conversation:
|
348 |
{history}
|
349 |
-
|
350 |
Instructions:
|
351 |
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
|
352 |
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
|
353 |
3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
|
354 |
-
|
355 |
Question:
|
356 |
{prompt}
|
357 |
"""
|
|
|
10 |
import networkx as nx
|
11 |
from pyvis.network import Network
|
12 |
|
13 |
+
|
14 |
client = chromadb.Client()
|
15 |
collection_name = "BioModelsRAG"
|
16 |
|
17 |
global db
|
18 |
db = client.get_or_create_collection(name=collection_name)
|
19 |
|
20 |
+
#Todolists
|
21 |
+
#1. if MODEL (cannot download) don't even include (TICK)
|
22 |
+
#2. switch the choosing and groq api key so if they just want to visualize thats fine (TICK)
|
23 |
+
|
24 |
+
|
25 |
class BioModelFetcher:
|
26 |
def __init__(self, github_owner="TheBobBob", github_repo_cache="BiomodelsCache", biomodels_json_db_path="src/cached_biomodels.json"):
|
27 |
self.github_owner = github_owner
|
|
|
121 |
def __init__(self, groq_api_key):
|
122 |
self.groq_client = Groq(api_key=groq_api_key)
|
123 |
|
124 |
+
def split_biomodels(self, antimony_file_path, models):
|
125 |
text_splitter = CharacterTextSplitter(
|
126 |
separator=" // ",
|
127 |
chunk_size=1000,
|
|
|
130 |
is_separator_regex=False,
|
131 |
)
|
132 |
|
133 |
+
directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
|
134 |
+
|
135 |
+
files = os.listdir(directory_path)
|
136 |
+
for file in files:
|
137 |
+
file_path = os.path.join(directory_path, file)
|
138 |
+
try:
|
139 |
+
with open(file_path, 'r') as f:
|
140 |
+
file_content = f.read()
|
141 |
+
items = text_splitter.create_documents([file_content])
|
142 |
+
self.create_vector_db(items, models)
|
143 |
+
break
|
144 |
+
except Exception as e:
|
145 |
+
print(f"Error reading file {file_path}: {e}")
|
146 |
+
|
147 |
return db
|
148 |
|
149 |
+
def create_vector_db(self, final_items, models):
|
150 |
counter = 0
|
151 |
+
for model_id in models:
|
152 |
+
try:
|
153 |
+
results = db.get(where={"document": {"$eq": model_id}})
|
154 |
+
|
155 |
+
#might be a problem here?
|
156 |
+
if results['documents']:
|
157 |
+
continue
|
158 |
+
|
159 |
+
#could also be a problem in how the IDs are created
|
160 |
for item in final_items:
|
161 |
counter += 1 # Increment counter for each item
|
162 |
item_id = f"{counter}_{model_id}"
|
|
|
168 |
2. Maintain all original values and include any mathematical expressions or values in full.
|
169 |
3. Ensure that all variable names and their values are clearly presented.
|
170 |
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
|
|
|
171 |
Segment of Antimony: {item}
|
172 |
"""
|
173 |
|
|
|
187 |
)
|
188 |
else:
|
189 |
print(f"Error: No content returned from Groq for model {model_id}.")
|
190 |
+
except Exception as e:
|
191 |
+
print(f"Error processing model {model_id}: {e}")
|
192 |
|
193 |
|
194 |
class SBMLNetworkVisualizer:
|
|
|
286 |
if models:
|
287 |
model_ids = list(models.keys())
|
288 |
model_ids = [model_id for model_id in model_ids if not str(model_id).startswith("MODEL")]
|
|
|
289 |
if models:
|
290 |
selected_models = st.multiselect(
|
291 |
"Select biomodels to analyze",
|
|
|
303 |
|
304 |
net = self.visualizer.sbml_to_network(model_file_path)
|
305 |
|
306 |
+
st.subheader(f"Model: {model_data['title']}")
|
307 |
net.show(f"sbml_network_{model_id}.html")
|
308 |
|
309 |
HtmlFile = open(f"sbml_network_{model_id}.html", "r", encoding="utf-8")
|
|
|
324 |
antimony_file_path = model_file_path.replace(".xml", ".txt")
|
325 |
|
326 |
AntimonyConverter.convert_sbml_to_antimony(model_file_path, antimony_file_path)
|
327 |
+
self.splitter.split_biomodels(antimony_file_path, selected_models)
|
328 |
|
329 |
st.info(f"Model {model_id} {model_data['name']} has successfully been added to the database! :) ")
|
330 |
|
|
|
356 |
flat_recommendation = [item for sublist in best_recommendation for item in (sublist if isinstance(sublist, list) else [sublist])]
|
357 |
query_results_final += "\n\n".join(flat_recommendation) + "\n\n"
|
358 |
|
359 |
+
|
360 |
prompt_template = f"""
|
361 |
Using the context and previous conversation provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
|
|
|
362 |
Context:
|
363 |
{query_results_final}
|
|
|
364 |
Previous Conversation:
|
365 |
{history}
|
|
|
366 |
Instructions:
|
367 |
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
|
368 |
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
|
369 |
3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
|
|
|
370 |
Question:
|
371 |
{prompt}
|
372 |
"""
|