Update app.py
Browse files
app.py
CHANGED
@@ -105,7 +105,7 @@ def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
|
|
105 |
def split_biomodels(antimony_file_path):
|
106 |
|
107 |
text_splitter = RecursiveCharacterTextSplitter(
|
108 |
-
chunk_size=
|
109 |
chunk_overlap=20,
|
110 |
length_function=len,
|
111 |
is_separator_regex=False,
|
@@ -148,8 +148,9 @@ def create_vector_db(final_items):
|
|
148 |
from llama_cpp import Llama
|
149 |
|
150 |
llm = Llama.from_pretrained(
|
151 |
-
repo_id="
|
152 |
-
filename="
|
|
|
153 |
)
|
154 |
|
155 |
for item in final_items:
|
@@ -165,13 +166,12 @@ def create_vector_db(final_items):
|
|
165 |
Once the summarizing is done, write 'END'.
|
166 |
"""
|
167 |
|
168 |
-
response2 =
|
|
|
|
|
|
|
169 |
|
170 |
-
|
171 |
-
response = response2[0]["text"].strip()
|
172 |
-
documents.append(response)
|
173 |
-
else:
|
174 |
-
print("No response received from Llama model.")
|
175 |
|
176 |
if final_items:
|
177 |
db.add(
|
@@ -196,8 +196,9 @@ def generate_response(db, query_text, previous_context):
|
|
196 |
from llama_cpp import Llama
|
197 |
|
198 |
llm = Llama.from_pretrained(
|
199 |
-
repo_id="
|
200 |
-
filename="
|
|
|
201 |
)
|
202 |
|
203 |
prompt_template = f"""
|
@@ -220,9 +221,7 @@ def generate_response(db, query_text, previous_context):
|
|
220 |
prompt_template
|
221 |
)
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
print(response)
|
226 |
|
227 |
|
228 |
def streamlit_app():
|
|
|
105 |
def split_biomodels(antimony_file_path):
|
106 |
|
107 |
text_splitter = RecursiveCharacterTextSplitter(
|
108 |
+
chunk_size=2000,
|
109 |
chunk_overlap=20,
|
110 |
length_function=len,
|
111 |
is_separator_regex=False,
|
|
|
148 |
from llama_cpp import Llama
|
149 |
|
150 |
llm = Llama.from_pretrained(
|
151 |
+
repo_id="google/gemma-2-2b-it-GGUF",
|
152 |
+
filename="2b_it_v2.gguf",
|
153 |
+
verbose = True
|
154 |
)
|
155 |
|
156 |
for item in final_items:
|
|
|
166 |
Once the summarizing is done, write 'END'.
|
167 |
"""
|
168 |
|
169 |
+
response2 = llm(
|
170 |
+
prompt,
|
171 |
+
max_tokens = None,
|
172 |
+
)
|
173 |
|
174 |
+
print(response2)
|
|
|
|
|
|
|
|
|
175 |
|
176 |
if final_items:
|
177 |
db.add(
|
|
|
196 |
from llama_cpp import Llama
|
197 |
|
198 |
llm = Llama.from_pretrained(
|
199 |
+
repo_id="google/gemma-2-2b-it-GGUF",
|
200 |
+
filename="2b_it_v2.gguf",
|
201 |
+
verbose = True
|
202 |
)
|
203 |
|
204 |
prompt_template = f"""
|
|
|
221 |
prompt_template
|
222 |
)
|
223 |
|
224 |
+
print(response2)
|
|
|
|
|
225 |
|
226 |
|
227 |
def streamlit_app():
|