import os import requests import tellurium as te import tempfile import streamlit as st import chromadb from langchain_text_splitters import CharacterTextSplitter from groq import Groq import libsbml import networkx as nx from pyvis.network import Network client = chromadb.Client() collection_name = "BioModelsRAG" global db db = client.get_or_create_collection(name=collection_name) class BioModelFetcher: def __init__(self, github_owner="TheBobBob", github_repo_cache="BiomodelsCache", biomodels_json_db_path="src/cached_biomodels.json"): self.github_owner = github_owner self.github_repo_cache = github_repo_cache self.biomodels_json_db_path = biomodels_json_db_path self.local_download_dir = tempfile.mkdtemp() def fetch_github_json(self): url = f"https://api.github.com/repos/{self.github_owner}/{self.github_repo_cache}/contents/{self.biomodels_json_db_path}" headers = {"Accept": "application/vnd.github+json"} response = requests.get(url, headers=headers) if response.status_code == 200: data = response.json() if "download_url" in data: file_url = data["download_url"] json_response = requests.get(file_url) json_data = json_response.json() return json_data else: raise ValueError(f"Unable to fetch model DB from GitHub repository: {self.github_owner} - {self.github_repo_cache}") else: raise ValueError(f"Unable to fetch model DB from GitHub repository: {self.github_owner} - {self.github_repo_cache}") class BioModelSearch: @staticmethod def search_models(search_str, cached_data): query_text = search_str.strip().lower() models = {} for model_id, model_data in cached_data.items(): if 'name' in model_data: name = model_data['name'].lower() url = model_data['url'] title = model_data['title'] authors = model_data['authors'] if query_text: if ' ' in query_text: query_words = query_text.split(" ") if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words): models[model_id] = { 'ID': model_id, 'name': name, 'url': url, 'title': title, 'authors': authors, } else: if query_text in ' '.join([str(v).lower() for v in model_data.values()]): models[model_id] = { 'ID': model_id, 'name': name, 'url': url, 'title': title, 'authors': authors, } return models class ModelDownloader: @staticmethod def download_model_file(model_url, model_id, local_download_dir): model_url = f"https://raw.githubusercontent.com/sys-bio/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml" response = requests.get(model_url) if response.status_code == 200: os.makedirs(local_download_dir, exist_ok=True) file_path = os.path.join(local_download_dir, f"{model_id}.xml") with open(file_path, 'wb') as file: file.write(response.content) return file_path else: raise ValueError(f"Failed to download the model from {model_url}") class AntimonyConverter: @staticmethod def convert_sbml_to_antimony(sbml_file_path, antimony_file_path): try: r = te.loadSBMLModel(sbml_file_path) antimony_str = r.getCurrentAntimony() with open(antimony_file_path, 'w') as file: file.write(antimony_str) except Exception as e: print(f"Error converting SBML to Antimony: {e}") class BioModelSplitter: def __init__(self, groq_api_key): self.groq_client = Groq(api_key=groq_api_key) def split_biomodels(self, antimony_file_path, models, model_id): text_splitter = CharacterTextSplitter( separator=" // ", chunk_size=1000, chunk_overlap=200, length_function=len, is_separator_regex=False, ) with open(antimony_file_path) as f: file_content = f.read() items = text_splitter.create_documents([file_content]) self.create_vector_db(items, model_id) return db def create_vector_db(self, final_items, model_id): counter = 0 try: results = db.get(where={"document": model_id}) chromadb.api.client.SharedSystemClient.clear_system_cache() if len(results['documents']) == 0: for item in final_items: counter += 1 # Increment counter for each item item_id = f"{counter}_{model_id}" # Construct the prompt prompt = f""" Summarize the following segment of Antimony in a clear and concise manner: 1. Provide a detailed summary using a reasonable number of words. 2. Maintain all original values and include any mathematical expressions or values in full. 3. Ensure that all variable names and their values are clearly presented. 4. Write the summary in paragraph format, putting an emphasis on clarity and completeness. Segment of Antimony: {item} """ chat_completion = self.groq_client.chat.completions.create( messages=[{ "role": "user", "content": prompt, }], model="llama-3.1-8b-instant", ) if chat_completion.choices[0].message.content: db.upsert( ids=[item_id], metadatas=[{"document": model_id}], documents=[chat_completion.choices[0].message.content], ) chromadb.api.client.SharedSystemClient.clear_system_cache() else: print(f"Error: No content returned from Groq for model {model_id}.") except Exception as e: print(f"Error processing model {model_id}: {e}") class SBMLNetworkVisualizer: @staticmethod def sbml_to_network(file_path): reader = libsbml.SBMLReader() document = reader.readSBML(file_path) model = document.getModel() G = nx.Graph() # Add species as nodes for species in model.getListOfSpecies(): species_id = species.getId() G.add_node(species_id, label=species_id, shape="dot", color="blue") # Add reactions as edges with reaction details as labels for reaction in model.getListOfReactions(): reaction_id = reaction.getId() substrates = [s.getSpecies() for s in reaction.getListOfReactants()] products = [p.getSpecies() for p in reaction.getListOfProducts()] substrate_str = ' + '.join(substrates) product_str = ' + '.join(products) reaction_equation = f"{substrate_str} -> {product_str}" for substrate in substrates: for product in products: G.add_edge( substrate, product, label=reaction_equation, color="gray" ) net = Network(notebook=True) net.from_nx(G) net.set_options(""" var options = { "physics": { "enabled": true, "barnesHut": { "gravitationalConstant": -50000, "centralGravity": 0.3, "springLength": 95 }, "maxVelocity": 50, "minVelocity": 0.1 }, "nodes": { "size": 20, "font": { "size": 18 } }, "edges": { "arrows": { "to": { "enabled": true } }, "label": { "enabled": true, "font": { "size": 10 } } } } """) return net class StreamlitApp: def __init__(self): self.fetcher = BioModelFetcher() self.searcher = BioModelSearch() self.downloader = ModelDownloader() self.splitter = None self.visualizer = SBMLNetworkVisualizer() def run(self): st.title("BioModelsRAG") if "messages" not in st.session_state: st.session_state.messages = [] search_str = st.text_input("Enter search query:", key = "search_str") if search_str: cached_data = self.fetcher.fetch_github_json() models = self.searcher.search_models(search_str, cached_data) if models: model_ids = list(models.keys()) model_ids = [model_id for model_id in model_ids if not str(model_id).startswith("MODEL")] if models: selected_models = st.multiselect( "Select biomodels to analyze", options=model_ids, default=[model_ids[0]] ) if models: if st.button("Visualize selected models"): for model_id in selected_models: model_data = models[model_id] model_url = model_data['url'] model_file_path = self.downloader.download_model_file(model_url, model_id, self.fetcher.local_download_dir) net = self.visualizer.sbml_to_network(model_file_path) st.subheader(f"Model {model_data['title']}") net.show(f"sbml_network_{model_id}.html") HtmlFile = open(f"sbml_network_{model_id}.html", "r", encoding="utf-8") st.components.v1.html(HtmlFile.read(), height=600) GROQ_API_KEY = st.text_input("Enter a GROQ API Key (which is free to make!):", key = "api_keys") self.splitter = BioModelSplitter(GROQ_API_KEY) if GROQ_API_KEY: if st.button("Analyze Selected Models"): for model_id in selected_models: model_data = models[model_id] st.write(f"Selected model: {model_data['name']}") model_url = model_data['url'] model_file_path = self.downloader.download_model_file(model_url, model_id, self.fetcher.local_download_dir) antimony_file_path = model_file_path.replace(".xml", ".txt") AntimonyConverter.convert_sbml_to_antimony(model_file_path, antimony_file_path) self.splitter.split_biomodels(antimony_file_path, selected_models, model_id) st.info(f"Model {model_id} {model_data['name']} has successfully been added to the database! :) ") prompt_fin = st.chat_input("Enter Q when you would like to quit! ", key = "input_1") if prompt_fin: prompt = str(prompt_fin) st.session_state.messages.append({"role": "user", "content": prompt}) history = st.session_state.messages[-6:] response = self.generate_response(prompt, history, models) st.session_state.messages.append({"role": "assistant", "content": response}) for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) def generate_response(self, prompt, history, models): query_results_final = "" for model_id in models: query_results = db.query( query_texts = prompt, n_results=5, where={"document": {"$eq": model_id}}, ) chromadb.api.client.SharedSystemClient.clear_system_cache() best_recommendation = query_results['documents'] flat_recommendation = [item for sublist in best_recommendation for item in (sublist if isinstance(sublist, list) else [sublist])] query_results_final += "\n\n".join(flat_recommendation) + "\n\n" prompt_template = f""" Using the context and previous conversation provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly: Context: {query_results_final} Previous Conversation: {history} Instructions: 1. Cross-Reference: Use all provided context to define variables and identify any unknown entities. 2. Mathematical Calculations: Perform any necessary calculations based on the context and available data. 3. Consistency: Remember and incorporate previous responses if the question is related to earlier information. Question: {prompt} """ chat_completion = self.splitter.groq_client.chat.completions.create( messages=[{ "role": "user", "content": prompt_template, }], model="llama-3.1-8b-instant", ) return chat_completion.choices[0].message.content if __name__ == "__main__": app = StreamlitApp() app.run()