Spaces:
Runtime error
Runtime error
File size: 4,185 Bytes
c0430d0 26d9e8e c0430d0 26d9e8e c0430d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from copy import deepcopy
from huggingface_hub import from_pretrained_fastai
from PIL import Image
import streamlit as st
import pandas as pd
_LABELS = (
"affenpinscher",
"afghan_hound",
"african_hunting_dog",
"airedale",
"american_staffordshire_terrier",
"appenzeller",
"australian_terrier",
"basenji",
"basset",
"beagle",
"bedlington_terrier",
"bernese_mountain_dog",
"black-and-tan_coonhound",
"blenheim_spaniel",
"bloodhound",
"bluetick",
"border_collie",
"border_terrier",
"borzoi",
"boston_bull",
"bouvier_des_flandres",
"boxer",
"brabancon_griffon",
"briard",
"brittany_spaniel",
"bull_mastiff",
"cairn",
"cardigan",
"chesapeake_bay_retriever",
"chihuahua",
"chow",
"clumber",
"cocker_spaniel",
"collie",
"curly-coated_retriever",
"dandie_dinmont",
"dhole",
"dingo",
"doberman",
"english_foxhound",
"english_setter",
"english_springer",
"entlebucher",
"eskimo_dog",
"flat-coated_retriever",
"french_bulldog",
"german_shepherd",
"german_short-haired_pointer",
"giant_schnauzer",
"golden_retriever",
"gordon_setter",
"great_dane",
"great_pyrenees",
"greater_swiss_mountain_dog",
"groenendael",
"ibizan_hound",
"irish_setter",
"irish_terrier",
"irish_water_spaniel",
"irish_wolfhound",
"italian_greyhound",
"japanese_spaniel",
"keeshond",
"kelpie",
"kerry_blue_terrier",
"komondor",
"kuvasz",
"labrador_retriever",
"lakeland_terrier",
"leonberg",
"lhasa",
"malamute",
"malinois",
"maltese_dog",
"mexican_hairless",
"miniature_pinscher",
"miniature_poodle",
"miniature_schnauzer",
"newfoundland",
"norfolk_terrier",
"norwegian_elkhound",
"norwich_terrier",
"old_english_sheepdog",
"otterhound",
"papillon",
"pekinese",
"pembroke",
"pomeranian",
"pug",
"redbone",
"rhodesian_ridgeback",
"rottweiler",
"saint_bernard",
"saluki",
"samoyed",
"schipperke",
"scotch_terrier",
"scottish_deerhound",
"sealyham_terrier",
"shetland_sheepdog",
"shih-tzu",
"siberian_husky",
"silky_terrier",
"soft-coated_wheaten_terrier",
"staffordshire_bullterrier",
"standard_poodle",
"standard_schnauzer",
"sussex_spaniel",
"tibetan_mastiff",
"tibetan_terrier",
"toy_poodle",
"toy_terrier",
"vizsla",
"walker_hound",
"weimaraner",
"welsh_springer_spaniel",
"west_highland_white_terrier",
"whippet",
"wire-haired_fox_terrier",
"yorkshire_terrier",
)
def get_breed(path):
pass
@st.cache_resource
def get_predictor():
return from_pretrained_fastai("TheDima/resnet50-dog-breed-identification")
def predict(image):
# Get predictions
predictor = get_predictor()
pred, pred_idx, probs = predictor.predict(image)
return pred, probs[pred_idx].item(), probs
def print_probabilities(probs, labels, top_n=10):
df = pd.DataFrame({"Label": labels, "Probability": probs})
df = df.sort_values(by="Probability", ascending=False).head(top_n)
st.dataframe(df, column_order=["Label", "Probability"], hide_index=True)
st.title("Dog Breed Recognition")
uploaded_file = st.file_uploader("Upload a doggy...", type=["jpg", "jpeg"])
if uploaded_file is not None:
# Display uploaded image
image = Image.open(uploaded_file)
image_copy = deepcopy(image)
# Make a prediction
with st.spinner("Checking..."):
pred, prob, probs = predict(image)
centered_html = f"""
<div style="text-align: center;">
<h3>It is {pred.replace("_", " ").title()}! (I am {100*prob:.1f}% sure 😉)</h3> <br>
</div>
"""
st.markdown(centered_html, unsafe_allow_html=True)
st.image(image_copy, caption="Uploaded doggy", use_column_width=True)
st.markdown("---")
st.markdown("Nerdy Top-10 Probabilities: ")
print_probabilities(probs, _LABELS)
st.markdown("---")
st.write(f"We know only 120 breeds: {', '.join(_LABELS).replace('_', ' ').title()}.")
|