# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import torch from transformers import AutoConfig, AutoModelForCausalLM, \ MptConfig, MptForCausalLM, MptModel from llava_llama3.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM class LlavaMptConfig(MptConfig): model_type = "llava_mpt" class LlavaMptModel(LlavaMetaModel, MptModel): config_class = LlavaMptConfig def __init__(self, config: MptConfig): config.hidden_size = config.d_model super(LlavaMptModel, self).__init__(config) def embed_tokens(self, x): return self.wte(x) class LlavaMptForCausalLM(MptForCausalLM, LlavaMetaForCausalLM): config_class = LlavaMptConfig supports_gradient_checkpointing = True def __init__(self, config): super(MptForCausalLM, self).__init__(config) self.transformer = LlavaMptModel(config) self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.transformer def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, LlavaMptModel): module.gradient_checkpointing = value def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, images=None): input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) return super().forward( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) _inputs['images'] = images return _inputs AutoConfig.register("llava_mpt", LlavaMptConfig) AutoModelForCausalLM.register(LlavaMptConfig, LlavaMptForCausalLM)