import gradio as gr from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer from threading import Thread import re import time from PIL import Image import torch import spaces processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") model = LlavaNextForConditionalGeneration.from_pretrained("TheFinAI/FinLLaVA", torch_dtype=torch.float16, low_cpu_mem_usage=True) model.to("cuda:0") @spaces.GPU def bot_streaming(message, history): print(message) if message["files"]: image = message["files"][-1]["path"] else: # if there's no image uploaded for this turn, look for images in the past turns # kept inside tuples, take the last one for hist in history: if type(hist[0])==tuple: image = hist[0][0] if image is None: gr.Error("You need to upload an image for LLaVA to work.") prompt=f"[INST] \n{message['text']} [/INST]" image = Image.open(image).convert("RGB") inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() text_prompt =f"[INST] \n{message['text']} [/INST]" buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer[len(text_prompt):] time.sleep(0.04) yield generated_text_without_prompt demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA NeXT", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]}, {"text": "How to make this pastry?", "files":["./baklava.png"]}], description="Try [LLaVA NeXT](https://huggingface.co/docs/transformers/main/en/model_doc/llava_next) in this demo (more specifically, the [Mistral-7B variant](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf)). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", stop_btn="Stop Generation", multimodal=True) demo.launch(debug=True)