File size: 12,449 Bytes
e7abd9e c19c5f9 e7abd9e b8db958 e7abd9e 5a9e4d8 e7abd9e b8db958 dc3fddc b8db958 dc3fddc b8db958 e7abd9e b8db958 e7abd9e b8db958 c19c5f9 fc869a4 b8db958 e7abd9e fc869a4 b8db958 e7abd9e b8db958 e7abd9e b8db958 fc869a4 b8db958 fc869a4 b8db958 e7abd9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import { useMemo } from "react";
import {
looksLikeRegex,
parseSearchQuery,
getValueByPath,
} from "../utils/searchUtils";
import { ALLOWED_MODELS, isModelAllowed } from "../constants/allowedModels";
// 硬编码数据集
const HARDCODED_SCORES = {
vision: {
"GPT-4o": 55.54, "o3-Mini": 0.00, "Deepseek-V3": 0.00, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 16.27,
"meta-llama/Llama-3.1-70B-Instruct": 0.00, "google/gemma-3-4b-it": 14.97, "google/gemma-3-27b-it": 25.57,
"Qwen/Qwen2.5-32B-Instruct": 0.00, "Qwen/Qwen2.5-Omni-7B": 24.97, "TheFinAI/finma-7b-full": 0.00,
"Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 0.00, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 0.00,
"TheFinAI/FinMA-ES-Bilingual": 0.00, "TheFinAI/plutus-8B-instruct": 0.00, "Qwen-VL-MAX": 18.47,
"LLaVA-1.6 Vicuna-13B": 19.77, "Deepseek-VL-7B-Chat": 19.10, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
"Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
},
audio: {
"GPT-4o": 55.56, "o3-Mini": 0.00, "Deepseek-V3": 0.00, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 0.00,
"meta-llama/Llama-3.1-70B-Instruct": 0.00, "google/gemma-3-4b-it": 0.00, "google/gemma-3-27b-it": 0.00,
"Qwen/Qwen2.5-32B-Instruct": 0.00, "Qwen/Qwen2.5-Omni-7B": 48.22, "TheFinAI/finma-7b-full": 0.00,
"Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 0.00, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 0.00,
"TheFinAI/FinMA-ES-Bilingual": 0.00, "TheFinAI/plutus-8B-instruct": 0.00, "Qwen-VL-MAX": 0.00,
"LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 51.58, "Qwen2-Audio-7B": 48.02,
"Qwen2-Audio-7B-Instruct": 50.06, "SALMONN-7B": 24.24, "SALMONN-13B": 24.59
},
english: {
"GPT-4o": 42.18, "o3-Mini": 20.20, "Deepseek-V3": 18.04, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 24.16,
"meta-llama/Llama-3.1-70B-Instruct": 38.71, "google/gemma-3-4b-it": 16.13, "google/gemma-3-27b-it": 17.19,
"Qwen/Qwen2.5-32B-Instruct": 32.01, "Qwen/Qwen2.5-Omni-7B": 24.99, "TheFinAI/finma-7b-full": 28.89,
"Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 29.39, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 26.38,
"TheFinAI/FinMA-ES-Bilingual": 31.72, "TheFinAI/plutus-8B-instruct": 27.82, "Qwen-VL-MAX": 0.00,
"LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
"Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
},
chinese: {
"GPT-4o": 60.34, "o3-Mini": 0.00, "Deepseek-V3": 60.94, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 64.51,
"meta-llama/Llama-3.1-70B-Instruct": 56.74, "google/gemma-3-4b-it": 26.23, "google/gemma-3-27b-it": 26.24,
"Qwen/Qwen2.5-32B-Instruct": 56.62, "Qwen/Qwen2.5-Omni-7B": 53.09, "TheFinAI/finma-7b-full": 24.42,
"Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 23.04, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 13.18,
"TheFinAI/FinMA-ES-Bilingual": 21.50, "TheFinAI/plutus-8B-instruct": 31.04, "Qwen-VL-MAX": 0.00,
"LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
"Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
},
japanese: {
"GPT-4o": 0.00, "o3-Mini": 0.00, "Deepseek-V3": 0.00, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 48.43,
"meta-llama/Llama-3.1-70B-Instruct": 32.17, "google/gemma-3-4b-it": 8.98, "google/gemma-3-27b-it": 23.96,
"Qwen/Qwen2.5-32B-Instruct": 4.54, "Qwen/Qwen2.5-Omni-7B": 44.35, "TheFinAI/finma-7b-full": 46.94,
"Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 47.59, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 23.96,
"TheFinAI/FinMA-ES-Bilingual": 57.36, "TheFinAI/plutus-8B-instruct": 34.62, "Qwen-VL-MAX": 0.00,
"LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
"Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
},
spanish: {
"GPT-4o": 29.80, "o3-Mini": 4.53, "Deepseek-V3": 25.49, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 47.90,
"meta-llama/Llama-3.1-70B-Instruct": 37.84, "google/gemma-3-4b-it": 27.66, "google/gemma-3-27b-it": 27.77,
"Qwen/Qwen2.5-32B-Instruct": 37.47, "Qwen/Qwen2.5-Omni-7B": 39.16, "TheFinAI/finma-7b-full": 27.04,
"Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 42.86, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 28.01,
"TheFinAI/FinMA-ES-Bilingual": 38.69, "TheFinAI/plutus-8B-instruct": 40.16, "Qwen-VL-MAX": 0.00,
"LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
"Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
},
greek: {
"GPT-4o": 43.04, "o3-Mini": 9.48, "Deepseek-V3": 39.07, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 48.95,
"meta-llama/Llama-3.1-70B-Instruct": 43.60, "google/gemma-3-4b-it": 15.45, "google/gemma-3-27b-it": 15.44,
"Qwen/Qwen2.5-32B-Instruct": 44.32, "Qwen/Qwen2.5-Omni-7B": 23.45, "TheFinAI/finma-7b-full": 17.93,
"Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 29.49, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 20.91,
"TheFinAI/FinMA-ES-Bilingual": 15.47, "TheFinAI/plutus-8B-instruct": 60.19, "Qwen-VL-MAX": 0.00,
"LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
"Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
},
bilingual: {
"GPT-4o": 92.29, "o3-Mini": 90.13, "Deepseek-V3": 86.26, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 89.17,
"meta-llama/Llama-3.1-70B-Instruct": 92.13, "google/gemma-3-4b-it": 35.92, "google/gemma-3-27b-it": 35.92,
"Qwen/Qwen2.5-32B-Instruct": 92.29, "Qwen/Qwen2.5-Omni-7B": 91.80, "TheFinAI/finma-7b-full": 69.24,
"Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 91.60, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 71.81,
"TheFinAI/FinMA-ES-Bilingual": 66.57, "TheFinAI/plutus-8B-instruct": 91.59, "Qwen-VL-MAX": 0.00,
"LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
"Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
},
multilingual: {
"GPT-4o": 6.53, "o3-Mini": 7.80, "Deepseek-V3": 36.99, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 13.52,
"meta-llama/Llama-3.1-70B-Instruct": 21.97, "google/gemma-3-4b-it": 0.00, "google/gemma-3-27b-it": 0.00,
"Qwen/Qwen2.5-32B-Instruct": 18.48, "Qwen/Qwen2.5-Omni-7B": 16.29, "TheFinAI/finma-7b-full": 3.10,
"Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 1.76, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 10.25,
"TheFinAI/FinMA-ES-Bilingual": 0.35, "TheFinAI/plutus-8B-instruct": 7.24, "Qwen-VL-MAX": 0.00,
"LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
"Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
}
};
// Calculate min/max averages
export const useAverageRange = (data) => {
return useMemo(() => {
const averages = data.map((item) => item.model.average_score);
return {
minAverage: Math.min(...averages),
maxAverage: Math.max(...averages),
};
}, [data]);
};
// Generate colors for scores
export const useColorGenerator = (minAverage, maxAverage) => {
return useMemo(() => {
const colorCache = new Map();
return (value) => {
const cached = colorCache.get(value);
if (cached) return cached;
const normalizedValue = (value - minAverage) / (maxAverage - minAverage);
const red = Math.round(255 * (1 - normalizedValue) * 1);
const green = Math.round(255 * normalizedValue) * 1;
// const color = `rgba(${red}, ${green}, 0, 1)`;
const color = `rgba(${red}, 0, ${green}, 1)`;
colorCache.set(value, color);
return color;
};
}, [minAverage, maxAverage]);
};
// Process data with boolean standardization
export const useProcessedData = (data, averageMode, visibleColumns) => {
return useMemo(() => {
// 直接使用硬编码数据创建模型列表
const modelList = [];
// 从HARDCODED_SCORES中获取所有模型名称
const modelNames = new Set();
Object.values(HARDCODED_SCORES).forEach(categoryData => {
Object.entries(categoryData).forEach(([modelName, score]) => {
// 添加所有模型,不管分数是否为0
modelNames.add(modelName);
});
});
// 为每个模型创建条目
Array.from(modelNames).forEach((modelName, index) => {
// 创建硬编码评估数据
const hardcodedEvaluations = {
vision_average: getHardcodedScore(modelName, 'vision'),
audio_average: getHardcodedScore(modelName, 'audio'),
english_average: getHardcodedScore(modelName, 'english'),
chinese_average: getHardcodedScore(modelName, 'chinese'),
japanese_average: getHardcodedScore(modelName, 'japanese'),
spanish_average: getHardcodedScore(modelName, 'spanish'),
greek_average: getHardcodedScore(modelName, 'greek'),
bilingual_average: getHardcodedScore(modelName, 'bilingual'),
multilingual_average: getHardcodedScore(modelName, 'multilingual')
};
// 计算总平均分(包含分数为0的类别)
const scores = Object.values(hardcodedEvaluations).filter(score => score !== null);
const averageScore = scores.length > 0 ? scores.reduce((a, b) => a + b, 0) / scores.length : null;
// 创建模型数据
modelList.push({
id: `model-${index}`,
model: {
name: modelName,
average_score: averageScore,
type: "chat", // 统一设为chat类型
},
evaluations: hardcodedEvaluations,
features: {
is_moe: false,
is_flagged: false,
is_highlighted_by_maintainer: false,
is_merged: false,
is_not_available_on_hub: false,
},
metadata: {
submission_date: new Date().toISOString(),
},
isMissing: false,
});
});
// 根据平均分排序
modelList.sort((a, b) => {
if (a.model.average_score === null && b.model.average_score === null)
return 0;
if (a.model.average_score === null) return 1;
if (b.model.average_score === null) return -1;
return b.model.average_score - a.model.average_score;
});
// 添加排名
return modelList.map((item, index) => ({
...item,
static_rank: index + 1,
}));
}, [data, averageMode, visibleColumns]);
};
// 辅助函数:从硬编码数据中获取分数
function getHardcodedScore(modelName, category) {
if (!HARDCODED_SCORES[category]) return null;
// 尝试精确匹配
if (HARDCODED_SCORES[category][modelName] !== undefined) {
return HARDCODED_SCORES[category][modelName];
}
// 尝试部分匹配
for (const key in HARDCODED_SCORES[category]) {
if (modelName.includes(key) || key.includes(modelName)) {
return HARDCODED_SCORES[category][key];
}
}
return null;
}
// Common filtering logic
export const useFilteredData = (
processedData,
selectedPrecisions,
selectedTypes,
paramsRange,
searchValue,
selectedBooleanFilters,
rankingMode,
pinnedModels = [],
isOfficialProviderActive = false
) => {
return useMemo(() => {
// 由于使用的是硬编码数据,这里直接返回所有数据而不进行过滤
return processedData.map((item, index) => ({
...item,
dynamic_rank: index + 1,
rank: rankingMode === "static" ? item.static_rank : index + 1,
isPinned: pinnedModels.includes(item.id),
}));
}, [
processedData,
rankingMode,
pinnedModels,
]);
};
// Column visibility management
export const useColumnVisibility = (visibleColumns = []) => {
// Create secure visibility object
const columnVisibility = useMemo(() => {
// Check visible columns
const safeVisibleColumns = Array.isArray(visibleColumns)
? visibleColumns
: [];
const visibility = {};
try {
safeVisibleColumns.forEach((columnKey) => {
if (typeof columnKey === "string") {
visibility[columnKey] = true;
}
});
} catch (error) {
console.warn("Error in useColumnVisibility:", error);
}
return visibility;
}, [visibleColumns]);
return columnVisibility;
};
|