File size: 12,449 Bytes
e7abd9e
 
 
 
 
 
c19c5f9
e7abd9e
b8db958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a9e4d8
 
e7abd9e
 
 
 
 
 
 
 
 
b8db958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc3fddc
 
b8db958
 
 
dc3fddc
b8db958
 
 
e7abd9e
b8db958
 
 
e7abd9e
b8db958
 
 
 
 
 
 
 
 
 
 
 
 
c19c5f9
fc869a4
b8db958
 
e7abd9e
 
 
 
 
 
fc869a4
b8db958
 
e7abd9e
 
 
 
 
 
b8db958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
b8db958
 
fc869a4
b8db958
 
fc869a4
b8db958
e7abd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import { useMemo } from "react";
import {
  looksLikeRegex,
  parseSearchQuery,
  getValueByPath,
} from "../utils/searchUtils";
import { ALLOWED_MODELS, isModelAllowed } from "../constants/allowedModels";

// 硬编码数据集
const HARDCODED_SCORES = {
  vision: {
    "GPT-4o": 55.54, "o3-Mini": 0.00, "Deepseek-V3": 0.00, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 16.27,
    "meta-llama/Llama-3.1-70B-Instruct": 0.00, "google/gemma-3-4b-it": 14.97, "google/gemma-3-27b-it": 25.57,
    "Qwen/Qwen2.5-32B-Instruct": 0.00, "Qwen/Qwen2.5-Omni-7B": 24.97, "TheFinAI/finma-7b-full": 0.00,
    "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 0.00, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 0.00,
    "TheFinAI/FinMA-ES-Bilingual": 0.00, "TheFinAI/plutus-8B-instruct": 0.00, "Qwen-VL-MAX": 18.47,
    "LLaVA-1.6 Vicuna-13B": 19.77, "Deepseek-VL-7B-Chat": 19.10, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
    "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
  },
  audio: {
    "GPT-4o": 55.56, "o3-Mini": 0.00, "Deepseek-V3": 0.00, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 0.00,
    "meta-llama/Llama-3.1-70B-Instruct": 0.00, "google/gemma-3-4b-it": 0.00, "google/gemma-3-27b-it": 0.00,
    "Qwen/Qwen2.5-32B-Instruct": 0.00, "Qwen/Qwen2.5-Omni-7B": 48.22, "TheFinAI/finma-7b-full": 0.00,
    "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 0.00, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 0.00,
    "TheFinAI/FinMA-ES-Bilingual": 0.00, "TheFinAI/plutus-8B-instruct": 0.00, "Qwen-VL-MAX": 0.00,
    "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 51.58, "Qwen2-Audio-7B": 48.02,
    "Qwen2-Audio-7B-Instruct": 50.06, "SALMONN-7B": 24.24, "SALMONN-13B": 24.59
  },
  english: {
    "GPT-4o": 42.18, "o3-Mini": 20.20, "Deepseek-V3": 18.04, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 24.16,
    "meta-llama/Llama-3.1-70B-Instruct": 38.71, "google/gemma-3-4b-it": 16.13, "google/gemma-3-27b-it": 17.19,
    "Qwen/Qwen2.5-32B-Instruct": 32.01, "Qwen/Qwen2.5-Omni-7B": 24.99, "TheFinAI/finma-7b-full": 28.89,
    "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 29.39, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 26.38,
    "TheFinAI/FinMA-ES-Bilingual": 31.72, "TheFinAI/plutus-8B-instruct": 27.82, "Qwen-VL-MAX": 0.00,
    "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
    "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
  },
  chinese: {
    "GPT-4o": 60.34, "o3-Mini": 0.00, "Deepseek-V3": 60.94, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 64.51,
    "meta-llama/Llama-3.1-70B-Instruct": 56.74, "google/gemma-3-4b-it": 26.23, "google/gemma-3-27b-it": 26.24,
    "Qwen/Qwen2.5-32B-Instruct": 56.62, "Qwen/Qwen2.5-Omni-7B": 53.09, "TheFinAI/finma-7b-full": 24.42,
    "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 23.04, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 13.18,
    "TheFinAI/FinMA-ES-Bilingual": 21.50, "TheFinAI/plutus-8B-instruct": 31.04, "Qwen-VL-MAX": 0.00,
    "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
    "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
  },
  japanese: {
    "GPT-4o": 0.00, "o3-Mini": 0.00, "Deepseek-V3": 0.00, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 48.43,
    "meta-llama/Llama-3.1-70B-Instruct": 32.17, "google/gemma-3-4b-it": 8.98, "google/gemma-3-27b-it": 23.96,
    "Qwen/Qwen2.5-32B-Instruct": 4.54, "Qwen/Qwen2.5-Omni-7B": 44.35, "TheFinAI/finma-7b-full": 46.94,
    "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 47.59, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 23.96,
    "TheFinAI/FinMA-ES-Bilingual": 57.36, "TheFinAI/plutus-8B-instruct": 34.62, "Qwen-VL-MAX": 0.00,
    "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
    "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
  },
  spanish: {
    "GPT-4o": 29.80, "o3-Mini": 4.53, "Deepseek-V3": 25.49, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 47.90,
    "meta-llama/Llama-3.1-70B-Instruct": 37.84, "google/gemma-3-4b-it": 27.66, "google/gemma-3-27b-it": 27.77,
    "Qwen/Qwen2.5-32B-Instruct": 37.47, "Qwen/Qwen2.5-Omni-7B": 39.16, "TheFinAI/finma-7b-full": 27.04,
    "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 42.86, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 28.01,
    "TheFinAI/FinMA-ES-Bilingual": 38.69, "TheFinAI/plutus-8B-instruct": 40.16, "Qwen-VL-MAX": 0.00,
    "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
    "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
  },
  greek: {
    "GPT-4o": 43.04, "o3-Mini": 9.48, "Deepseek-V3": 39.07, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 48.95,
    "meta-llama/Llama-3.1-70B-Instruct": 43.60, "google/gemma-3-4b-it": 15.45, "google/gemma-3-27b-it": 15.44,
    "Qwen/Qwen2.5-32B-Instruct": 44.32, "Qwen/Qwen2.5-Omni-7B": 23.45, "TheFinAI/finma-7b-full": 17.93,
    "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 29.49, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 20.91,
    "TheFinAI/FinMA-ES-Bilingual": 15.47, "TheFinAI/plutus-8B-instruct": 60.19, "Qwen-VL-MAX": 0.00,
    "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
    "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
  },
  bilingual: {
    "GPT-4o": 92.29, "o3-Mini": 90.13, "Deepseek-V3": 86.26, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 89.17,
    "meta-llama/Llama-3.1-70B-Instruct": 92.13, "google/gemma-3-4b-it": 35.92, "google/gemma-3-27b-it": 35.92,
    "Qwen/Qwen2.5-32B-Instruct": 92.29, "Qwen/Qwen2.5-Omni-7B": 91.80, "TheFinAI/finma-7b-full": 69.24,
    "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 91.60, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 71.81,
    "TheFinAI/FinMA-ES-Bilingual": 66.57, "TheFinAI/plutus-8B-instruct": 91.59, "Qwen-VL-MAX": 0.00,
    "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
    "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
  },
  multilingual: {
    "GPT-4o": 6.53, "o3-Mini": 7.80, "Deepseek-V3": 36.99, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 13.52,
    "meta-llama/Llama-3.1-70B-Instruct": 21.97, "google/gemma-3-4b-it": 0.00, "google/gemma-3-27b-it": 0.00,
    "Qwen/Qwen2.5-32B-Instruct": 18.48, "Qwen/Qwen2.5-Omni-7B": 16.29, "TheFinAI/finma-7b-full": 3.10,
    "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 1.76, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 10.25,
    "TheFinAI/FinMA-ES-Bilingual": 0.35, "TheFinAI/plutus-8B-instruct": 7.24, "Qwen-VL-MAX": 0.00,
    "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00,
    "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00
  }
};

// Calculate min/max averages
export const useAverageRange = (data) => {
  return useMemo(() => {
    const averages = data.map((item) => item.model.average_score);
    return {
      minAverage: Math.min(...averages),
      maxAverage: Math.max(...averages),
    };
  }, [data]);
};

// Generate colors for scores
export const useColorGenerator = (minAverage, maxAverage) => {
  return useMemo(() => {
    const colorCache = new Map();
    return (value) => {
      const cached = colorCache.get(value);
      if (cached) return cached;

      const normalizedValue = (value - minAverage) / (maxAverage - minAverage);
      const red = Math.round(255 * (1 - normalizedValue) * 1);
      const green = Math.round(255 * normalizedValue) * 1;
      // const color = `rgba(${red}, ${green}, 0, 1)`;
      const color = `rgba(${red}, 0, ${green}, 1)`;
      colorCache.set(value, color);
      return color;
    };
  }, [minAverage, maxAverage]);
};

// Process data with boolean standardization
export const useProcessedData = (data, averageMode, visibleColumns) => {
  return useMemo(() => {
    // 直接使用硬编码数据创建模型列表
    const modelList = [];
    
    // 从HARDCODED_SCORES中获取所有模型名称
    const modelNames = new Set();
    Object.values(HARDCODED_SCORES).forEach(categoryData => {
      Object.entries(categoryData).forEach(([modelName, score]) => {
        // 添加所有模型,不管分数是否为0
        modelNames.add(modelName);
      });
    });
    
    // 为每个模型创建条目
    Array.from(modelNames).forEach((modelName, index) => {
      // 创建硬编码评估数据
      const hardcodedEvaluations = {
        vision_average: getHardcodedScore(modelName, 'vision'),
        audio_average: getHardcodedScore(modelName, 'audio'),
        english_average: getHardcodedScore(modelName, 'english'),
        chinese_average: getHardcodedScore(modelName, 'chinese'),
        japanese_average: getHardcodedScore(modelName, 'japanese'),
        spanish_average: getHardcodedScore(modelName, 'spanish'),
        greek_average: getHardcodedScore(modelName, 'greek'),
        bilingual_average: getHardcodedScore(modelName, 'bilingual'),
        multilingual_average: getHardcodedScore(modelName, 'multilingual')
      };
      
      // 计算总平均分(包含分数为0的类别)
      const scores = Object.values(hardcodedEvaluations).filter(score => score !== null);
      const averageScore = scores.length > 0 ? scores.reduce((a, b) => a + b, 0) / scores.length : null;
      
      // 创建模型数据
      modelList.push({
        id: `model-${index}`,
        model: {
          name: modelName,
          average_score: averageScore,
          type: "chat", // 统一设为chat类型
        },
        evaluations: hardcodedEvaluations,
        features: {
          is_moe: false,
          is_flagged: false,
          is_highlighted_by_maintainer: false,
          is_merged: false,
          is_not_available_on_hub: false,
        },
        metadata: {
          submission_date: new Date().toISOString(),
        },
        isMissing: false,
      });
    });

    // 根据平均分排序
    modelList.sort((a, b) => {
      if (a.model.average_score === null && b.model.average_score === null)
        return 0;
      if (a.model.average_score === null) return 1;
      if (b.model.average_score === null) return -1;
      return b.model.average_score - a.model.average_score;
    });

    // 添加排名
    return modelList.map((item, index) => ({
      ...item,
      static_rank: index + 1,
    }));
  }, [data, averageMode, visibleColumns]);
};

// 辅助函数:从硬编码数据中获取分数
function getHardcodedScore(modelName, category) {
  if (!HARDCODED_SCORES[category]) return null;
  
  // 尝试精确匹配
  if (HARDCODED_SCORES[category][modelName] !== undefined) {
    return HARDCODED_SCORES[category][modelName];
  }
  
  // 尝试部分匹配
  for (const key in HARDCODED_SCORES[category]) {
    if (modelName.includes(key) || key.includes(modelName)) {
      return HARDCODED_SCORES[category][key];
    }
  }
  
  return null;
}

// Common filtering logic
export const useFilteredData = (
  processedData,
  selectedPrecisions,
  selectedTypes,
  paramsRange,
  searchValue,
  selectedBooleanFilters,
  rankingMode,
  pinnedModels = [],
  isOfficialProviderActive = false
) => {
  return useMemo(() => {
    // 由于使用的是硬编码数据,这里直接返回所有数据而不进行过滤
    return processedData.map((item, index) => ({
          ...item,
      dynamic_rank: index + 1,
      rank: rankingMode === "static" ? item.static_rank : index + 1,
          isPinned: pinnedModels.includes(item.id),
    }));
  }, [
    processedData,
    rankingMode,
    pinnedModels,
  ]);
};

// Column visibility management
export const useColumnVisibility = (visibleColumns = []) => {
  // Create secure visibility object
  const columnVisibility = useMemo(() => {
    // Check visible columns
    const safeVisibleColumns = Array.isArray(visibleColumns)
      ? visibleColumns
      : [];

    const visibility = {};
    try {
      safeVisibleColumns.forEach((columnKey) => {
        if (typeof columnKey === "string") {
          visibility[columnKey] = true;
        }
      });
    } catch (error) {
      console.warn("Error in useColumnVisibility:", error);
    }
    return visibility;
  }, [visibleColumns]);

  return columnVisibility;
};