import { useMemo } from "react"; import { looksLikeRegex, parseSearchQuery, getValueByPath, } from "../utils/searchUtils"; import { ALLOWED_MODELS, isModelAllowed } from "../constants/allowedModels"; // 硬编码数据集 const HARDCODED_SCORES = { vision: { "GPT-4o": 55.54, "o3-Mini": 0.00, "Deepseek-V3": 0.00, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 16.27, "meta-llama/Llama-3.1-70B-Instruct": 0.00, "google/gemma-3-4b-it": 14.97, "google/gemma-3-27b-it": 25.57, "Qwen/Qwen2.5-32B-Instruct": 0.00, "Qwen/Qwen2.5-Omni-7B": 24.97, "TheFinAI/finma-7b-full": 0.00, "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 0.00, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 0.00, "TheFinAI/FinMA-ES-Bilingual": 0.00, "TheFinAI/plutus-8B-instruct": 0.00, "Qwen-VL-MAX": 18.47, "LLaVA-1.6 Vicuna-13B": 19.77, "Deepseek-VL-7B-Chat": 19.10, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00, "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00 }, audio: { "GPT-4o": 55.56, "o3-Mini": 0.00, "Deepseek-V3": 0.00, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 0.00, "meta-llama/Llama-3.1-70B-Instruct": 0.00, "google/gemma-3-4b-it": 0.00, "google/gemma-3-27b-it": 0.00, "Qwen/Qwen2.5-32B-Instruct": 0.00, "Qwen/Qwen2.5-Omni-7B": 48.22, "TheFinAI/finma-7b-full": 0.00, "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 0.00, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 0.00, "TheFinAI/FinMA-ES-Bilingual": 0.00, "TheFinAI/plutus-8B-instruct": 0.00, "Qwen-VL-MAX": 0.00, "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 51.58, "Qwen2-Audio-7B": 48.02, "Qwen2-Audio-7B-Instruct": 50.06, "SALMONN-7B": 24.24, "SALMONN-13B": 24.59 }, english: { "GPT-4o": 42.18, "o3-Mini": 20.20, "Deepseek-V3": 18.04, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 24.16, "meta-llama/Llama-3.1-70B-Instruct": 38.71, "google/gemma-3-4b-it": 16.13, "google/gemma-3-27b-it": 17.19, "Qwen/Qwen2.5-32B-Instruct": 32.01, "Qwen/Qwen2.5-Omni-7B": 24.99, "TheFinAI/finma-7b-full": 28.89, "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 29.39, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 26.38, "TheFinAI/FinMA-ES-Bilingual": 31.72, "TheFinAI/plutus-8B-instruct": 27.82, "Qwen-VL-MAX": 0.00, "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00, "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00 }, chinese: { "GPT-4o": 60.34, "o3-Mini": 0.00, "Deepseek-V3": 60.94, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 64.51, "meta-llama/Llama-3.1-70B-Instruct": 56.74, "google/gemma-3-4b-it": 26.23, "google/gemma-3-27b-it": 26.24, "Qwen/Qwen2.5-32B-Instruct": 56.62, "Qwen/Qwen2.5-Omni-7B": 53.09, "TheFinAI/finma-7b-full": 24.42, "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 23.04, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 13.18, "TheFinAI/FinMA-ES-Bilingual": 21.50, "TheFinAI/plutus-8B-instruct": 31.04, "Qwen-VL-MAX": 0.00, "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00, "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00 }, japanese: { "GPT-4o": 0.00, "o3-Mini": 0.00, "Deepseek-V3": 0.00, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 48.43, "meta-llama/Llama-3.1-70B-Instruct": 32.17, "google/gemma-3-4b-it": 8.98, "google/gemma-3-27b-it": 23.96, "Qwen/Qwen2.5-32B-Instruct": 4.54, "Qwen/Qwen2.5-Omni-7B": 44.35, "TheFinAI/finma-7b-full": 46.94, "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 47.59, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 23.96, "TheFinAI/FinMA-ES-Bilingual": 57.36, "TheFinAI/plutus-8B-instruct": 34.62, "Qwen-VL-MAX": 0.00, "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00, "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00 }, spanish: { "GPT-4o": 29.80, "o3-Mini": 4.53, "Deepseek-V3": 25.49, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 47.90, "meta-llama/Llama-3.1-70B-Instruct": 37.84, "google/gemma-3-4b-it": 27.66, "google/gemma-3-27b-it": 27.77, "Qwen/Qwen2.5-32B-Instruct": 37.47, "Qwen/Qwen2.5-Omni-7B": 39.16, "TheFinAI/finma-7b-full": 27.04, "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 42.86, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 28.01, "TheFinAI/FinMA-ES-Bilingual": 38.69, "TheFinAI/plutus-8B-instruct": 40.16, "Qwen-VL-MAX": 0.00, "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00, "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00 }, greek: { "GPT-4o": 43.04, "o3-Mini": 9.48, "Deepseek-V3": 39.07, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 48.95, "meta-llama/Llama-3.1-70B-Instruct": 43.60, "google/gemma-3-4b-it": 15.45, "google/gemma-3-27b-it": 15.44, "Qwen/Qwen2.5-32B-Instruct": 44.32, "Qwen/Qwen2.5-Omni-7B": 23.45, "TheFinAI/finma-7b-full": 17.93, "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 29.49, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 20.91, "TheFinAI/FinMA-ES-Bilingual": 15.47, "TheFinAI/plutus-8B-instruct": 60.19, "Qwen-VL-MAX": 0.00, "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00, "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00 }, bilingual: { "GPT-4o": 92.29, "o3-Mini": 90.13, "Deepseek-V3": 86.26, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 89.17, "meta-llama/Llama-3.1-70B-Instruct": 92.13, "google/gemma-3-4b-it": 35.92, "google/gemma-3-27b-it": 35.92, "Qwen/Qwen2.5-32B-Instruct": 92.29, "Qwen/Qwen2.5-Omni-7B": 91.80, "TheFinAI/finma-7b-full": 69.24, "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 91.60, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 71.81, "TheFinAI/FinMA-ES-Bilingual": 66.57, "TheFinAI/plutus-8B-instruct": 91.59, "Qwen-VL-MAX": 0.00, "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00, "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00 }, multilingual: { "GPT-4o": 6.53, "o3-Mini": 7.80, "Deepseek-V3": 36.99, "meta-llama/Llama-4-Scout-17B-16E-Instruct": 13.52, "meta-llama/Llama-3.1-70B-Instruct": 21.97, "google/gemma-3-4b-it": 0.00, "google/gemma-3-27b-it": 0.00, "Qwen/Qwen2.5-32B-Instruct": 18.48, "Qwen/Qwen2.5-Omni-7B": 16.29, "TheFinAI/finma-7b-full": 3.10, "Duxiaoman-DI/Llama3.1-XuanYuan-FinX1-Preview": 1.76, "cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese": 10.25, "TheFinAI/FinMA-ES-Bilingual": 0.35, "TheFinAI/plutus-8B-instruct": 7.24, "Qwen-VL-MAX": 0.00, "LLaVA-1.6 Vicuna-13B": 0.00, "Deepseek-VL-7B-Chat": 0.00, "Whisper-V3": 0.00, "Qwen2-Audio-7B": 0.00, "Qwen2-Audio-7B-Instruct": 0.00, "SALMONN-7B": 0.00, "SALMONN-13B": 0.00 } }; // Calculate min/max averages export const useAverageRange = (data) => { return useMemo(() => { const averages = data.map((item) => item.model.average_score); return { minAverage: Math.min(...averages), maxAverage: Math.max(...averages), }; }, [data]); }; // Generate colors for scores export const useColorGenerator = (minAverage, maxAverage) => { return useMemo(() => { const colorCache = new Map(); return (value) => { const cached = colorCache.get(value); if (cached) return cached; const normalizedValue = (value - minAverage) / (maxAverage - minAverage); const red = Math.round(255 * (1 - normalizedValue) * 1); const green = Math.round(255 * normalizedValue) * 1; // const color = `rgba(${red}, ${green}, 0, 1)`; const color = `rgba(${red}, 0, ${green}, 1)`; colorCache.set(value, color); return color; }; }, [minAverage, maxAverage]); }; // Process data with boolean standardization export const useProcessedData = (data, averageMode, visibleColumns) => { return useMemo(() => { // 直接使用硬编码数据创建模型列表 const modelList = []; // 从HARDCODED_SCORES中获取所有模型名称 const modelNames = new Set(); Object.values(HARDCODED_SCORES).forEach(categoryData => { Object.entries(categoryData).forEach(([modelName, score]) => { // 添加所有模型,不管分数是否为0 modelNames.add(modelName); }); }); // 为每个模型创建条目 Array.from(modelNames).forEach((modelName, index) => { // 创建硬编码评估数据 const hardcodedEvaluations = { vision_average: getHardcodedScore(modelName, 'vision'), audio_average: getHardcodedScore(modelName, 'audio'), english_average: getHardcodedScore(modelName, 'english'), chinese_average: getHardcodedScore(modelName, 'chinese'), japanese_average: getHardcodedScore(modelName, 'japanese'), spanish_average: getHardcodedScore(modelName, 'spanish'), greek_average: getHardcodedScore(modelName, 'greek'), bilingual_average: getHardcodedScore(modelName, 'bilingual'), multilingual_average: getHardcodedScore(modelName, 'multilingual') }; // 计算总平均分(包含分数为0的类别) const scores = Object.values(hardcodedEvaluations).filter(score => score !== null); const averageScore = scores.length > 0 ? scores.reduce((a, b) => a + b, 0) / scores.length : null; // 创建模型数据 modelList.push({ id: `model-${index}`, model: { name: modelName, average_score: averageScore, type: "chat", // 统一设为chat类型 }, evaluations: hardcodedEvaluations, features: { is_moe: false, is_flagged: false, is_highlighted_by_maintainer: false, is_merged: false, is_not_available_on_hub: false, }, metadata: { submission_date: new Date().toISOString(), }, isMissing: false, }); }); // 根据平均分排序 modelList.sort((a, b) => { if (a.model.average_score === null && b.model.average_score === null) return 0; if (a.model.average_score === null) return 1; if (b.model.average_score === null) return -1; return b.model.average_score - a.model.average_score; }); // 添加排名 return modelList.map((item, index) => ({ ...item, static_rank: index + 1, })); }, [data, averageMode, visibleColumns]); }; // 辅助函数:从硬编码数据中获取分数 function getHardcodedScore(modelName, category) { if (!HARDCODED_SCORES[category]) return null; // 尝试精确匹配 if (HARDCODED_SCORES[category][modelName] !== undefined) { return HARDCODED_SCORES[category][modelName]; } // 尝试部分匹配 for (const key in HARDCODED_SCORES[category]) { if (modelName.includes(key) || key.includes(modelName)) { return HARDCODED_SCORES[category][key]; } } return null; } // Common filtering logic export const useFilteredData = ( processedData, selectedPrecisions, selectedTypes, paramsRange, searchValue, selectedBooleanFilters, rankingMode, pinnedModels = [], isOfficialProviderActive = false ) => { return useMemo(() => { // 由于使用的是硬编码数据,这里直接返回所有数据而不进行过滤 return processedData.map((item, index) => ({ ...item, dynamic_rank: index + 1, rank: rankingMode === "static" ? item.static_rank : index + 1, isPinned: pinnedModels.includes(item.id), })); }, [ processedData, rankingMode, pinnedModels, ]); }; // Column visibility management export const useColumnVisibility = (visibleColumns = []) => { // Create secure visibility object const columnVisibility = useMemo(() => { // Check visible columns const safeVisibleColumns = Array.isArray(visibleColumns) ? visibleColumns : []; const visibility = {}; try { safeVisibleColumns.forEach((columnKey) => { if (typeof columnKey === "string") { visibility[columnKey] = true; } }); } catch (error) { console.warn("Error in useColumnVisibility:", error); } return visibility; }, [visibleColumns]); return columnVisibility; };