Update src/populate.py
Browse files- src/populate.py +6 -6
src/populate.py
CHANGED
@@ -10,15 +10,15 @@ from src.leaderboard.read_evals import get_raw_eval_results
|
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
-
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
-
df = pd.DataFrame.from_records(all_data_json)
|
17 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
-
df = df[cols].round(decimals=2)
|
19 |
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
-
df = df[has_no_nan_values(df, benchmark_cols)]
|
22 |
return df
|
23 |
|
24 |
|
|
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
+
#raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
+
#all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
+
#df = pd.DataFrame.from_records(all_data_json)
|
17 |
+
#df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
+
#df = df[cols].round(decimals=2)
|
19 |
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
+
df = pd.read_csv('../model_performance.csv')#df[has_no_nan_values(df, benchmark_cols)]
|
22 |
return df
|
23 |
|
24 |
|