genai-reward / app.py
TheFrenchDemos's picture
solved issue with number of authors and number of neighbors
24f3fe8
# docker build -t reward-simulator .docker run -p 7860:7860 -v $(pwd)/data:/app/data reward-simulator
from PIL import Image
import numpy as np
import io
import faiss
import requests
import torch
from request import get_ft, get_topk
from flickrapi import FlickrAPI
from flask import Flask, request, render_template, jsonify, send_from_directory
app = Flask(__name__)
PRESET_IMAGES = {
1: "static/1.webp",
2: "static/2.webp",
3: "static/3.webp"
}
# Add Flickr configuration
FLICKR_API_KEY = '80ef21a6f7eb0984ea613c316a89ca69'
FLICKR_API_SECRET = '4d0e8ce6734f4b3f'
flickr = FlickrAPI(FLICKR_API_KEY, FLICKR_API_SECRET, format='parsed-json', store_token=False)
def get_photo_id(url):
"""Extract photo ID from Flickr URL"""
try:
return url.split('/')[-1].split('_')[0]
except:
return None
def get_other_info(url):
"""Get author information from Flickr"""
try:
photo_id = get_photo_id(url)
if photo_id:
photo_info = flickr.photos.getInfo(photo_id=photo_id)
license = photo_info['photo']['license']
owner = photo_info['photo']['owner']
flickr_url = f"https://www.flickr.com/photos/{owner.get('nsid', '')}/{photo_id}"
return {
'username': owner.get('username', ''),
'realname': owner.get('realname', ''),
'nsid': owner.get('nsid', ''),
'flickr_url': flickr_url,
'license': license
}
except:
pass
return {
'username': 'Unknown',
'realname': 'Unknown',
'nsid': '',
'flickr_url': '',
'license': 'Unknown'
}
def load_model():
"""Load DINOv2 model once and cache it"""
torch.hub.set_dir('static')
model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
model.eval()
model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
return model
def load_index(index_path):
"""Load FAISS index once and cache it"""
return faiss.read_index(index_path)
def distance_to_similarity(distances, temp=1e-4):
"""Convert distance to similarity"""
for ii in range(len(distances)):
contribs = distances[ii].max() - distances[ii]
contribs = contribs / temp
sum_contribs = np.exp(contribs).sum()
distances[ii] = np.exp(contribs) / sum_contribs
return distances
def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
"""Calculate rewards based on user inputs and similarities"""
num_users = num_users_k * 1000
# Monthly revenue allocated to authors
authors_monthly_revenue = subscription * num_users * (author_share / 100)
rewards = []
for sim in similarities[0]:
# Attribution bonus based on similarity score and number of neighbors
attribution_bonus = sim * len(similarities[0])
# Calculate monthly rewards
author_month_reward = (authors_monthly_revenue / num_authors) * attribution_bonus
ro_month_reward = author_month_reward / (author_share / 100) * (ro_share / 100)
rewards.append({
'paid_per_month': f"{subscription:.0f}€",
'attribution': f"{sim*100:.0f}%",
'author_month_reward': f"{author_month_reward:.0f}€",
'ro_month_reward': f"{ro_month_reward:.0f}€"
# 'paid_per_month': f"{subscription:.0f}€",
# 'paid_per_gen': f"{paid_per_gen:.2f}€",
# 'aro_share': f"{aro_share:.2f}c€",
# 'attribution': f"{sim*100:.0f}%",
# 'training_data_reward': f"{training_data_reward:.2f}c€",
# 'author_month_reward': f"{author_month_reward:.0f}€",
# 'ro_month_reward': f"{ro_month_reward:.0f}€"
})
return rewards
# Global variables for model and index
model = None
index = None
urls = None
def init_model():
global model, index, urls
model = load_model()
index = load_index("data/openimages_index.bin")
with open("data/openimages_urls.txt", "r") as f:
urls = f.readlines()
@app.route('/')
def home():
return render_template('index.html')
@app.route('/static/<path:filename>')
def serve_static(filename):
return send_from_directory('static', filename)
DEFAULT_PARAMS = {
'subscription': 12,
'num_generations': 60,
'author_share': 5,
'ro_share': 10,
'num_users_k': 500,
'num_neighbors': 10,
'num_authors': 2000
}
@app.route('/select_preset/<int:preset_id>')
def select_preset(preset_id):
if preset_id not in PRESET_IMAGES:
return jsonify({'error': 'Invalid preset ID'}), 400
try:
image_path = PRESET_IMAGES[preset_id]
image = Image.open(image_path).convert('RGB')
# Use default parameters for presets
params = DEFAULT_PARAMS.copy()
# Get features and search
features = get_ft(model, image)
distances, indices = get_topk(index, features, topk=params['num_neighbors'])
# Collect valid results first
valid_results = []
valid_similarities = []
for i in range(params['num_neighbors']):
image_url = urls[indices[0][i]].strip()
try:
response = requests.head(image_url)
if response.status_code == 200:
valid_results.append({
'index': i,
'url': image_url
})
valid_similarities.append(distances[0][i])
except requests.RequestException:
continue
# Renormalize similarities for valid results
if valid_similarities:
similarities = distance_to_similarity(np.array([valid_similarities]), temp=1e-5)
# Calculate rewards with renormalized similarities
rewards = calculate_rewards(
params['subscription'],
params['num_generations'],
params['author_share'],
params['ro_share'],
params['num_users_k'],
similarities,
params['num_authors']
)
# Build final results
results = []
for i, result in enumerate(valid_results):
other_info = get_other_info(result['url'])
results.append({
'image_url': result['url'],
'rewards': rewards[i],
'other': other_info
})
return jsonify({'results': results})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/process', methods=['POST'])
def process_image():
if 'image' not in request.files:
return jsonify({'error': 'No image provided'}), 400
try:
image_file = request.files['image']
image = Image.open(io.BytesIO(image_file.read())).convert('RGB')
# Use default parameters if none provided
params = DEFAULT_PARAMS.copy()
if request.form:
params.update({
'subscription': float(request.form.get('subscription', params['subscription'])),
'num_generations': int(request.form.get('num_generations', params['num_generations'])),
'author_share': float(request.form.get('author_share', params['author_share'])),
'ro_share': float(request.form.get('ro_share', params['ro_share'])),
'num_users_k': int(request.form.get('num_users_k', params['num_users_k'])),
'num_neighbors': int(request.form.get('num_neighbors', params['num_neighbors'])),
'num_authors': int(request.form.get('num_authors', DEFAULT_PARAMS['num_authors'])),
})
# Process image
features = get_ft(model, image)
distances, indices = get_topk(index, features, topk=params['num_neighbors'])
# Collect valid results first
valid_results = []
valid_similarities = []
for i in range(params['num_neighbors']):
image_url = urls[indices[0][i]].strip()
try:
response = requests.head(image_url)
if response.status_code == 200:
valid_results.append({
'index': i,
'url': image_url
})
valid_similarities.append(distances[0][i])
except requests.RequestException:
continue
# Renormalize similarities for valid results
if valid_similarities:
similarities = distance_to_similarity(np.array([valid_similarities]), temp=1e-5)
# Calculate rewards with renormalized similarities
rewards = calculate_rewards(
params['subscription'],
params['num_generations'],
params['author_share'],
params['ro_share'],
params['num_users_k'],
similarities,
params['num_authors']
)
# Build final results
results = []
for i, result in enumerate(valid_results):
other_info = get_other_info(result['url'])
results.append({
'image_url': result['url'],
'rewards': rewards[i],
'other': other_info
})
return jsonify({'results': results})
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
init_model()
app.run(host='0.0.0.0', port=7860)