|
import streamlit as st |
|
from gradio_client import Client |
|
|
|
|
|
TITLE = "Llama2 70B Chatbot" |
|
DESCRIPTION = """ |
|
This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, |
|
a Llama 2 model with 70B parameters fine-tuned for chat instructions. |
|
""" |
|
|
|
|
|
client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/") |
|
|
|
|
|
def predict(message, system_prompt="", temperature=0.9, max_new_tokens=4096): |
|
return client.predict( |
|
message=message, |
|
system_prompt=system_prompt, |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
api_name="/chat" |
|
) |
|
|
|
|
|
st.title(TITLE) |
|
st.write(DESCRIPTION) |
|
|
|
|
|
message = st.text_area("Enter your message:", "") |
|
system_prompt = st.text_area("Optional system prompt:", "") |
|
temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05) |
|
max_new_tokens = st.slider("Max new tokens", min_value=0, max_value=4096, value=4096, step=64) |
|
|
|
if st.button("Predict"): |
|
response = predict(message, system_prompt, temperature, max_new_tokens) |
|
st.write("Response:", response) |
|
|
|
|