Illia56's picture
Update app.py
9d3d652
import streamlit as st
from gradio_client import Client
from st_audiorec import st_audiorec
# Constants
TITLE = "Llama2 70B Chatbot"
DESCRIPTION = """
This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, a Llama 2 model with 70B parameters fine-tuned for chat instructions.
| Model | Llama2 | Llama2-hf | Llama2-chat | Llama2-chat-hf |
|---|---|---|---|---|
| 70B | [Link](https://huggingface.co/meta-llama/Llama-2-70b) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-hf) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) |
---
"""
# Initialize client
with st.sidebar:
system_promptSide = st.text_input("Optional system prompt:")
temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0)
ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05)
RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05)
whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
def transcribe(wav_path):
return whisper_client.predict(
wav_path, # str (filepath or URL to file) in 'inputs' Audio component
"transcribe", # str in 'Task' Radio component
api_name="/predict"
)
# Prediction function
def predict(message, system_prompt='', temperature=0.7, max_new_tokens=4096,Topp=0.5,Repetitionpenalty=1.2):
with st.status("Starting client"):
client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/")
st.write("Requesting client")
with st.status("Requesting LLama-2"):
st.write("Requesting API")
response = client.predict(
message, # str in 'Message' Textbox component
system_prompt, # str in 'Optional system prompt' Textbox component
temperature, # int | float (numeric value between 0.0 and 1.0)
max_new_tokens, # int | float (numeric value between 0 and 4096)
Topp, # int | float (numeric value between 0.0 and 1)
Repetitionpenalty, # int | float (numeric value between 1.0 and 2.0)
api_name="/chat_1"
)
st.write("Done")
return response
# Streamlit UI
st.title(TITLE)
st.write(DESCRIPTION)
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=("πŸ§‘β€πŸ’»" if message["role"] == 'human' else 'πŸ¦™')):
st.markdown(message["content"])
textinput = st.chat_input("Ask LLama-2-70b anything...")
wav_audio_data = st_audiorec()
if wav_audio_data != None:
with st.status("Transcribing audio"):
# save audio
with open("audio.wav", "wb") as f:
f.write(wav_audio_data)
prompt = transcribe("audio.wav")
st.write("Transcribed audio")
st.chat_message("human",avatar = "πŸ§‘β€πŸ’»").markdown(prompt)
st.session_state.messages.append({"role": "human", "content": prompt})
# transcribe audio
response = predict(message= prompt)
with st.chat_message("assistant", avatar='πŸ¦™'):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
# React to user input
if prompt := textinput:
# Display user message in chat message container
st.chat_message("human",avatar = "πŸ§‘β€πŸ’»").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "human", "content": prompt})
response = predict(message=prompt)#, temperature= temperatureSide,max_new_tokens=max_new_tokensSide, Topp=ToppSide,Repetitionpenalty=RepetitionpenaltySide)
# Display assistant response in chat message container
with st.chat_message("assistant", avatar='πŸ¦™'):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})