File size: 9,029 Bytes
629deb2
 
 
92a8a4c
a528ac3
 
 
629deb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d44be5
629deb2
 
 
 
 
 
 
 
 
 
 
 
 
9101835
629deb2
9101835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629deb2
d848583
88fb256
629deb2
88fb256
9101835
 
 
 
 
629deb2
 
 
 
 
 
 
 
9101835
629deb2
 
 
 
 
 
 
 
 
 
054afae
 
 
 
 
 
 
9101835
629deb2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gradio as gr 
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
from PIL import Image
import io
import os
import warnings


theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)

def infer(prompt, api_key):
    stability_api = client.StabilityInference(
    key=api_key, # API Key reference.
    verbose=True, # Print debug messages.
    engine="stable-diffusion-xl-beta-v2-2-2", # Set the engine to use for generation. 
    # Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0 stable-inpainting-v1-0 stable-inpainting-512-v2-0
)
    answers = stability_api.generate(
    prompt=prompt,
    seed=992446758, # If a seed is provided, the resulting generated image will be deterministic.
                    # What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
                    # Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook.
    steps=30, # Amount of inference steps performed on image generation. Defaults to 30. 
    cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt.
                   # Setting this value higher increases the strength in which it tries to match your prompt.
                   # Defaults to 7.0 if not specified.
    width=512, # Generation width, defaults to 512 if not included.
    height=512, # Generation height, defaults to 512 if not included.
    samples=2, # Number of images to generate, defaults to 1 if not included.
    sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
                                                 # Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
                                                 # (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
)
    for resp in answers:
        for artifact in resp.artifacts:
            if artifact.finish_reason == generation.FILTER:
                warnings.warn(
                "Your request activated the API's safety filters and could not be processed."
                "Please modify the prompt and try again.")
            if artifact.type == generation.ARTIFACT_IMAGE:
                img = Image.open(io.BytesIO(artifact.binary))
    
    return [img]

css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px;
            margin-left: auto;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
        #component-16{border-top-width: 1px!important;margin-top: 1em}
        .image_duplication{position: absolute; width: 100px; left: 50px}
"""

with gr.Blocks(theme = theme, css = css) as demo:
    gr.Markdown("# Stable Diffusion XL")
    gr.Markdown("<p>This is an unoffical demo for Stable Diffusion XL, which is the latest stable diffusion model released by Stability AI. The main features include Next-level photorealism capabilities, image composition and face generation, use of shorter prompts to create descriptive imagery, greater capability to produce legible text and rich visuals and jaw-dropping aesthetics</p>")
    gr.Markdown(""" Please refer to [the official website](https://stability.ai/stable-diffusion) for further information""")
    api_key_input = gr.Textbox(type = "password", label = "Enter your StabilityAI API key here")
    
    with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
        with gr.Column():
            text = gr.Textbox(
                        label="Enter your prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        elem_id="prompt-text-input",
                    ).style(
                        border=(True, False, True, True),
                        rounded=(True, False, False, True),
                        container=False,
                    )
            btn = gr.Button("Generate image").style(
                    margin=False,
                    rounded=(False, True, True, False),
                    full_width=False,
                )

    gallery = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery"
        ).style(grid=[2], height="auto")

    btn.click(infer, inputs=[text, api_key_input], outputs=[gallery])
    examples = [
        ["Vintage hot rod with custom flame paint job"],
        ["Ancient, mysterious temple in a mountain range, surrounded by misty clouds and tall peaks"],
        ["Glimpses of a herd of wild elephants crossing a savanna"],
        ["Beautiful waterfall in a lush jungle, with sunlight shining through the trees,"]
    ]
    ex = gr.Examples(examples=examples,inputs=[text], cache_examples=False)

    
demo.launch()