Spaces:
Running
Running
File size: 8,465 Bytes
f7b7a4e 2f28eec f7b7a4e 7d71416 df909ae 7e110c9 f842416 fc7d330 7e110c9 93cf637 4ae6076 7d71416 bb00b3a 7d71416 bb00b3a 7d71416 21ce0bf 7d71416 fdf52cc 7d71416 6c4a90b 5a9e6a5 9c4157c 08b65b3 7d71416 17ad30c 7d71416 bb00b3a aa4548a 08b65b3 7d71416 bb00b3a fdf52cc 7d71416 fdf52cc 7d71416 bb00b3a 7d71416 4a4d1b5 7d71416 0928baf 7d71416 bb00b3a 7d71416 4a4d1b5 7d71416 85ba7c8 bb00b3a 7d71416 85ba7c8 7d71416 5a9e6a5 7d71416 aa4548a 08b65b3 7d71416 4a4d1b5 7d71416 5a9e6a5 041b9f4 5a9e6a5 041b9f4 7d71416 549c0fb f6d38e4 7d71416 93b7b56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
"""
Gradio requires input to be fed in a very peculiar way and does not provide too much flexibility - don't expect from this demo too much. The backbone had to be adjusted to work on hugging face spaces. Go see https://github.com/PiotrAntoniak/QuestionAnswering for a prettier version utilizing streamlit.
"""
import gradio as gr
description = """Do you have a long document and a bunch of questions that can be answered given the data in this file?
Fear not for this demo is for you.
Upload your pdf, ask your questions and wait for the magic to happen.
DISCLAIMER: I do no have idea what happens to the pdfs that you upload and who has access to them so make sure there is nothing confidential there.
"""
title = "QA answering from a pdf."
from datetime import datetime
import numpy as np
import time
import hashlib
import torch
from transformers import AutoTokenizer, AutoModel, AutoModelForQuestionAnswering, pipeline
from tqdm import tqdm
import os
device = "cuda:0" if torch.cuda.is_available() else "cpu"
import textract
from scipy.special import softmax
import pandas as pd
from datetime import datetime
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1")
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1").to(device).eval()
tokenizer_ans = AutoTokenizer.from_pretrained("deepset/roberta-large-squad2")
model_ans = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-large-squad2").to(device).eval()
if device == 'cuda:0':
pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans,device = 0)
else:
pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans)
def cls_pooling(model_output):
return model_output.last_hidden_state[:,0]
def encode_query(query):
encoded_input = tokenizer(query, truncation=True, return_tensors='pt').to(device)
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
embeddings = cls_pooling(model_output)
return embeddings.cpu()
def encode_docs(docs,maxlen = 64, stride = 32):
encoded_input = []
embeddings = []
spans = []
file_names = []
name, text = docs
temp_text = ""
text = text.split(" ")
if len(text) < maxlen:
text = " ".join(text)
encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
spans.append(temp_text)
file_names.append(name)
else:
num_iters = int(len(text)/maxlen)+1
for i in range(num_iters):
if i == 0:
temp_text = " ".join(text[i*maxlen:(i+1)*maxlen+stride])
else:
temp_text = " ".join(text[(i-1)*maxlen:(i)*maxlen][-stride:] + text[i*maxlen:(i+1)*maxlen])
encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
spans.append(temp_text)
file_names.append(name)
with torch.no_grad():
for encoded in tqdm(encoded_input):
model_output = model(**encoded, return_dict=True)
embeddings.append(cls_pooling(model_output))
embeddings = np.float32(torch.stack(embeddings).transpose(0, 1).cpu())
np.save("emb_{}.npy".format(name),dict(zip(list(range(len(embeddings))),embeddings)))
np.save("spans_{}.npy".format(name),dict(zip(list(range(len(spans))),spans)))
np.save("file_{}.npy".format(name),dict(zip(list(range(len(file_names))),file_names)))
return embeddings, spans, file_names
def predict(query,data):
print(datetime.today().strftime('%Y-%m-%d %H:%M:%S'))
name_to_save = data.name.split("/")[-1].split(".")[0][:-8]
k=20
st = str([query,name_to_save])
st_hashed = str(hashlib.sha256(st.encode()).hexdigest()) #just to speed up examples load
hist = st + " " + st_hashed
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
try: #if the same question was already asked for this document, upload question and answer
df = pd.read_csv("{}.csv".format(hash(st)))
list_outputs = []
for i in range(k):
temp = [df.iloc[n] for n in range(k)][i]
text = ''
text += 'PROBABILITIES: '+ temp.Probabilities + '\n\n'
text += 'ANSWER: ' +temp.Answer + '\n\n'
text += 'PASSAGE: '+temp.Passage + '\n\n'
list_outputs.append(text)
return list_outputs
except Exception as e:
print(e)
print(st)
if name_to_save+".txt" in os.listdir(): #if the document was already used, load its embeddings
doc_emb = np.load('emb_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
doc_text = np.load('spans_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
file_names_dicto = np.load('file_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
doc_emb = np.array(list(doc_emb.values())).reshape(-1,768)
doc_text = list(doc_text.values())
file_names = list(file_names_dicto.values())
else:
text = textract.process("{}".format(data.name)).decode('utf8')
text = text.replace("\r", " ")
text = text.replace("\n", " ")
text = text.replace(" . "," ")
doc_emb, doc_text, file_names = encode_docs((name_to_save,text),maxlen = 64, stride = 32)
doc_emb = doc_emb.reshape(-1, 768)
with open("{}.txt".format(name_to_save),"w",encoding="utf-8") as f:
f.write(text)
#once embeddings are calculated, run MIPS
start = time.time()
query_emb = encode_query(query)
scores = np.matmul(query_emb, doc_emb.transpose(1,0))[0].tolist()
doc_score_pairs = list(zip(doc_text, scores, file_names))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
probs_sum = 0
probs = softmax(sorted(scores,reverse = True)[:k])
table = {"Passage":[],"Answer":[],"Probabilities":[]}
#get answers for each pair of question (from user) and top best passages
for i, (passage, _, names) in enumerate(doc_score_pairs[:k]):
passage = passage.replace("\n","")
#passage = passage.replace(" . "," ")
if probs[i] > 0.1 or (i < 3 and probs[i] > 0.05): #generate answers for more likely passages but no less than 2
QA = {'question':query,'context':passage}
ans = pipe(QA)
probabilities = "P(a|p): {}, P(a|p,q): {}, P(p|q): {}".format(round(ans["score"],5),
round(ans["score"]*probs[i],5),
round(probs[i],5))
table["Passage"].append(passage)
table["Answer"].append(str(ans["answer"]).upper())
table["Probabilities"].append(probabilities)
else:
table["Passage"].append(passage)
table["Answer"].append("no_answer_calculated")
table["Probabilities"].append("P(p|q): {}".format(round(probs[i],5)))
#format answers for ~nice output and save it for future (if the same question is asked again using same pdf)
df = pd.DataFrame(table)
print(df)
print("time: "+ str(time.time()-start))
with open("HISTORY.txt","a", encoding = "utf-8") as f:
f.write(hist)
f.write(" " + str(current_time))
f.write("\n")
f.close()
df.to_csv("{}.csv".format(hash(st)), index=False)
list_outputs = []
for i in range(k):
text = ''
temp = [df.iloc[n] for n in range(k)][i]
text += 'PROBABILITIES: '+ temp.Probabilities + '\n\n'
text += 'ANSWER: ' +temp.Answer + '\n\n'
text += 'PASSAGE: '+temp.Passage + '\n\n'
list_outputs.append(text)
return list_outputs
iface = gr.Interface(examples = [
["How high is the highest mountain?","China.pdf"],
["Where is the highest mountain?","China.pdf"]
],
fn =predict,
inputs = [gr.inputs.Textbox(default="What is Open-domain question answering?"),
gr.inputs.File(),
],
outputs = 'text',
description=description,
title = title,
allow_flagging ="manual",flagging_options = ["correct","wrong"],
allow_screenshot=False)
iface.launch(enable_queue=True, show_error =True) |