open_domain_qa / app.py
ThePixOne's picture
Update app.py
6c4a90b
raw
history blame
7.03 kB
import gradio as gr
import numpy as np
import time
import hashlib
import torch
from transformers import AutoTokenizer, AutoModel, AutoModelForQuestionAnswering, pipeline
from tqdm import tqdm
import os
device = "cuda:0" if torch.cuda.is_available() else "cpu"
import textract
from scipy.special import softmax
import pandas as pd
from datetime import datetime
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1")
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1").to(device).eval()
tokenizer_ans = AutoTokenizer.from_pretrained("deepset/roberta-large-squad2")
model_ans = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-large-squad2").to(device).eval()
if device == 'cuda:0':
pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans,device = 0)
else:
pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans)
def cls_pooling(model_output):
return model_output.last_hidden_state[:,0]
def encode_query(query):
encoded_input = tokenizer(query, truncation=True, return_tensors='pt').to(device)
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
embeddings = cls_pooling(model_output)
return embeddings.cpu()
def encode_docs(docs,maxlen = 64, stride = 32):
encoded_input = []
embeddings = []
spans = []
file_names = []
name, text = docs
text = text.split(" ")
if len(text) < maxlen:
text = " ".join(text)
encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
spans.append(temp_text)
file_names.append(name)
else:
num_iters = int(len(text)/maxlen)+1
for i in range(num_iters):
if i == 0:
temp_text = " ".join(text[i*maxlen:(i+1)*maxlen+stride])
else:
temp_text = " ".join(text[(i-1)*maxlen:(i)*maxlen][-stride:] + text[i*maxlen:(i+1)*maxlen])
encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
spans.append(temp_text)
file_names.append(name)
with torch.no_grad():
for encoded in tqdm(encoded_input):
model_output = model(**encoded, return_dict=True)
embeddings.append(cls_pooling(model_output))
embeddings = np.float32(torch.stack(embeddings).transpose(0, 1).cpu())
np.save("encoded_gradio/emb_{}.npy".format(name),dict(zip(list(range(len(embeddings))),embeddings)))
np.save("encoded_gradio/spans_{}.npy".format(name),dict(zip(list(range(len(spans))),spans)))
np.save("encoded_gradio/file_{}.npy".format(name),dict(zip(list(range(len(file_names))),file_names)))
return embeddings, spans, file_names
def predict(query,data):
name_to_save = data.name.split("\\")[-1].split(".")[0][:-8]
st = str([query,name_to_save])
hist = st + " " + str(hashlib.sha256(st.encode()).hexdigest())
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
try:
df = pd.read_csv("HISTORY/{}.csv".format(hash(st)))
return df
except Exception as e:
print(e)
print(st)
if name_to_save+".txt" in os.listdir("text_gradio"):
doc_emb = np.load('encoded_gradio/emb_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
doc_text = np.load('encoded_gradio/spans_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
file_names_dicto = np.load('encoded_gradio/file_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
doc_emb = np.array(list(doc_emb.values())).reshape(-1,768)
doc_text = list(doc_text.values())
file_names = list(file_names_dicto.values())
else:
text = textract.process("{}".format(data.name)).decode('utf8')
text = text.replace("\r", " ")
text = text.replace("\n", " ")
text = text.replace(" . "," ")
doc_emb, doc_text, file_names = encode_docs((name_to_save,text),maxlen = 64, stride = 32)
doc_emb = doc_emb.reshape(-1, 768)
with open("text_gradio/{}.txt".format(name_to_save),"w",encoding="utf-8") as f:
f.write(text)
start = time.time()
query_emb = encode_query(query)
scores = np.matmul(query_emb, doc_emb.transpose(1,0))[0].tolist()
doc_score_pairs = list(zip(doc_text, scores, file_names))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
k = 5
probs_sum = 0
probs = softmax(sorted(scores,reverse = True)[:k])
table = {"Passage":[],"Answer":[],"Probabilities":[],"Source":[]}
for i, (passage, _, names) in enumerate(doc_score_pairs[:k]):
passage = passage.replace("\n","")
passage = passage.replace(" . "," ")
if probs[i] > 0.1 or (i < 3 and probs[i] > 0.05): #generate answers for more likely passages but no less than 2
QA = {'question':query,'context':passage}
ans = pipe(QA)
probabilities = "P(a|p): {}, P(a|p,q): {}, P(p|q): {}".format(round(ans["score"],5),
round(ans["score"]*probs[i],5),
round(probs[i],5))
passage = passage.replace(str(ans["answer"]),str(ans["answer"]).upper())
table["Passage"].append(passage)
table["Passage"].append("---")
table["Answer"].append(str(ans["answer"]).upper())
table["Answer"].append("---")
table["Probabilities"].append(probabilities)
table["Probabilities"].append("---")
table["Source"].append(names)
table["Source"].append("---")
else:
table["Passage"].append(passage)
table["Passage"].append("---")
table["Answer"].append("no_answer_calculated")
table["Answer"].append("---")
table["Probabilities"].append("P(p|q): {}".format(round(probs[i],5)))
table["Probabilities"].append("---")
table["Source"].append(names)
table["Source"].append("---")
df = pd.DataFrame(table)
print("time: "+ str(time.time()-start))
with open("HISTORY.txt","a", encoding = "utf-8") as f:
f.write(hist)
f.write(" " + str(current_time))
f.write("\n")
f.close()
df.to_csv("HISTORY/{}.csv".format(hash(st)), index=False)
return df
iface = gr.Interface(
fn =predict,
inputs = [gr.inputs.Textbox(default="What is Open-domain question answering?"),
gr.inputs.Checkbox(default=True),
gr.inputs.File(),
],
outputs = [
gr.outputs.Dataframe(),
],
allow_flagging ="manual",flagging_options = ["correct","wrong"],
allow_screenshot=False)
iface.launch(share = True,enable_queue=True, show_error =True)