Spaces:
Runtime error
Runtime error
TheProjectsGuy
commited on
Commit
·
61364af
1
Parent(s):
9543bb3
Uploaded normal app layout (without extractor)
Browse files- app.py +288 -0
- packages.txt +2 -0
- requirements.txt +11 -0
- utilities.py +478 -0
app.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Show VLAD clustering for set of example images or a user image
|
2 |
+
"""
|
3 |
+
User input:
|
4 |
+
- Domain: Indoor, Aerial, or Urban
|
5 |
+
- Image: Image to be clustered
|
6 |
+
- Cluster numbers (to visualize)
|
7 |
+
- Pixel coordinates (to pick further clusters)
|
8 |
+
- A unique cache ID (to store the DINO forward passes)
|
9 |
+
|
10 |
+
There are example images for each domain.
|
11 |
+
|
12 |
+
Output:
|
13 |
+
- All images with cluster assignments
|
14 |
+
|
15 |
+
Some Gradio links:
|
16 |
+
- Controlling layout
|
17 |
+
- https://www.gradio.app/guides/quickstart#blocks-more-flexibility-and-control
|
18 |
+
- Data state (persistence)
|
19 |
+
- https://www.gradio.app/guides/interface-state
|
20 |
+
- https://www.gradio.app/docs/state
|
21 |
+
- Layout control
|
22 |
+
- https://www.gradio.app/guides/controlling-layout
|
23 |
+
- https://www.gradio.app/guides/blocks-and-event-listeners
|
24 |
+
"""
|
25 |
+
|
26 |
+
# %%
|
27 |
+
import os
|
28 |
+
import gradio as gr
|
29 |
+
import numpy as np
|
30 |
+
import cv2 as cv
|
31 |
+
import torch
|
32 |
+
from torch import nn
|
33 |
+
from torch.nn import functional as F
|
34 |
+
from torchvision import transforms as tvf
|
35 |
+
from torchvision.transforms import functional as T
|
36 |
+
from PIL import Image
|
37 |
+
import matplotlib.pyplot as plt
|
38 |
+
import distinctipy as dipy
|
39 |
+
from typing import Literal, List
|
40 |
+
import gradio as gr
|
41 |
+
import time
|
42 |
+
import glob
|
43 |
+
import shutil
|
44 |
+
from copy import deepcopy
|
45 |
+
# DINOv2 imports
|
46 |
+
from utilities import DinoV2ExtractFeatures
|
47 |
+
from utilities import VLAD
|
48 |
+
|
49 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
50 |
+
|
51 |
+
# %%
|
52 |
+
# Configurations
|
53 |
+
T1 = Literal["query", "key", "value", "token"]
|
54 |
+
T2 = Literal["aerial", "indoor", "urban"]
|
55 |
+
DOMAINS = ["aerial", "indoor", "urban"]
|
56 |
+
T3 = Literal["dinov2_vits14", "dinov2_vitb14", "dinov2_vitl14",
|
57 |
+
"dinov2_vitg14"]
|
58 |
+
_ex = lambda x: os.path.realpath(os.path.expanduser(x))
|
59 |
+
dino_model: T3 = "dinov2_vitg14"
|
60 |
+
desc_layer: int = 31
|
61 |
+
desc_facet: T1 = "value"
|
62 |
+
num_c: int = 8
|
63 |
+
cache_dir: str = _ex("./cache") # Directory containing program cache
|
64 |
+
max_img_size: int = 1024 # Image resolution (max dim/size)
|
65 |
+
max_num_imgs: int = 10 # Max number of images to upload
|
66 |
+
share: bool = False # Share application using .gradio link
|
67 |
+
|
68 |
+
# Verify inputs
|
69 |
+
assert os.path.isdir(cache_dir), "Cache directory not found"
|
70 |
+
|
71 |
+
# %%
|
72 |
+
# Model and transforms
|
73 |
+
print("Loading DINO model")
|
74 |
+
# extractor = DinoV2ExtractFeatures(dino_model, desc_layer, desc_facet,
|
75 |
+
# device=device)
|
76 |
+
extractor = None
|
77 |
+
print("DINO model loaded")
|
78 |
+
# VLAD path (directory)
|
79 |
+
ext_s = f"{dino_model}/l{desc_layer}_{desc_facet}_c{num_c}"
|
80 |
+
vc_dir = os.path.join(cache_dir, "vocabulary", ext_s)
|
81 |
+
# Base image transformations
|
82 |
+
base_tf = tvf.Compose([
|
83 |
+
tvf.ToTensor(),
|
84 |
+
tvf.Normalize(mean=[0.485, 0.456, 0.406],
|
85 |
+
std=[0.229, 0.224, 0.225])
|
86 |
+
])
|
87 |
+
|
88 |
+
|
89 |
+
# %%
|
90 |
+
# Get VLAD object
|
91 |
+
def get_vlad_clusters(domain, pr = gr.Progress()):
|
92 |
+
dm: T2 = str(domain).lower()
|
93 |
+
assert dm in DOMAINS, "Invalid domain"
|
94 |
+
# Load VLAD cluster centers
|
95 |
+
pr(0, desc="Loading VLAD clusters")
|
96 |
+
c_centers_file = os.path.join(vc_dir, dm, "c_centers.pt")
|
97 |
+
if not os.path.isfile(c_centers_file):
|
98 |
+
return f"Cluster centers not found for: {domain}", None
|
99 |
+
c_centers = torch.load(c_centers_file)
|
100 |
+
pr(0.5)
|
101 |
+
num_c = c_centers.shape[0]
|
102 |
+
desc_dim = c_centers.shape[1]
|
103 |
+
vlad = VLAD(num_c, desc_dim,
|
104 |
+
cache_dir=os.path.dirname(c_centers_file))
|
105 |
+
vlad.fit(None) # Restore the cache
|
106 |
+
pr(1)
|
107 |
+
return f"VLAD clusters loaded for: {domain}", vlad
|
108 |
+
|
109 |
+
|
110 |
+
# %%
|
111 |
+
# Get VLAD descriptors
|
112 |
+
@torch.no_grad()
|
113 |
+
def get_descs(imgs_batch, pr = gr.Progress()):
|
114 |
+
imgs_batch: List[np.ndarray] = imgs_batch
|
115 |
+
pr(0, desc="Extracting descriptors")
|
116 |
+
patch_descs = []
|
117 |
+
for i, img in enumerate(imgs_batch):
|
118 |
+
# Convert to PIL image
|
119 |
+
pil_img = Image.fromarray(img)
|
120 |
+
img_pt = base_tf(pil_img).to(device)
|
121 |
+
if max(img_pt.shape[-2:]) > max_img_size:
|
122 |
+
print(f"Image {i+1}: {img_pt.shape[-2:]}, outside")
|
123 |
+
c, h, w = img_pt.shape
|
124 |
+
# Maintain aspect ratio
|
125 |
+
if h == max(img_pt.shape[-2:]):
|
126 |
+
w = int(w * max_img_size / h)
|
127 |
+
h = max_img_size
|
128 |
+
else:
|
129 |
+
h = int(h * max_img_size / w)
|
130 |
+
w = max_img_size
|
131 |
+
img_pt = T.resize(img_pt, (h, w),
|
132 |
+
interpolation=T.InterpolationMode.BICUBIC)
|
133 |
+
pil_img = pil_img.resize((w, h)) # Backup
|
134 |
+
# Make image patchable
|
135 |
+
c, h, w = img_pt.shape
|
136 |
+
h_new, w_new = (h // 14) * 14, (w // 14) * 14
|
137 |
+
img_pt = tvf.CenterCrop((h_new, w_new))(img_pt)[None, ...]
|
138 |
+
# Extract descriptors
|
139 |
+
ret = extractor(img_pt).cpu() # [1, n_p, d]
|
140 |
+
patch_descs.append({"img": pil_img, "descs": ret})
|
141 |
+
pr((i+1) / len(imgs_batch))
|
142 |
+
return patch_descs, \
|
143 |
+
f"Descriptors extracted for {len(imgs_batch)} images"
|
144 |
+
|
145 |
+
|
146 |
+
# %%
|
147 |
+
# Assign VLAD clusters (descriptor assignment)
|
148 |
+
def assign_vlad(patch_descs, vlad, pr = gr.Progress()):
|
149 |
+
vlad: VLAD = vlad
|
150 |
+
img_patch_descs = [pd["descs"] for pd in patch_descs]
|
151 |
+
pr(0, desc="Assigning VLAD clusters")
|
152 |
+
desc_assignments = [] # List[Tensor;shape=('h', 'w');int]
|
153 |
+
for i, qu_desc in enumerate(img_patch_descs):
|
154 |
+
# Residual vectors; 'n' could differ (based on img sizes)
|
155 |
+
res = vlad.generate_res_vec(qu_desc[0]) # ['n', n_c, d]
|
156 |
+
img = patch_descs[i]["img"]
|
157 |
+
h, w, c = np.array(img).shape
|
158 |
+
h_p, w_p = h // 14, w // 14
|
159 |
+
h_new, w_new = h_p * 14, w_p * 14
|
160 |
+
assert h_p * w_p == res.shape[0], "Residual incorrect!"
|
161 |
+
# Descriptor assignments
|
162 |
+
da = res.abs().sum(dim=2).argmin(dim=1).reshape(h_p, w_p)
|
163 |
+
da = F.interpolate(da[None, None, ...].to(float),
|
164 |
+
(h_new, w_new), mode="nearest")[0, 0].to(da.dtype)
|
165 |
+
desc_assignments.append(da)
|
166 |
+
pr((i+1) / len(img_patch_descs))
|
167 |
+
pr(1.0)
|
168 |
+
return desc_assignments, "VLAD clusters assigned"
|
169 |
+
|
170 |
+
|
171 |
+
# %%
|
172 |
+
# Cluster assignments to images
|
173 |
+
def get_ca_images(desc_assignments, patch_descs, alpha,
|
174 |
+
pr = gr.Progress()):
|
175 |
+
if desc_assignments is None or len(desc_assignments) == 0:
|
176 |
+
return None, "First load images"
|
177 |
+
c_colors = dipy.get_colors(num_c, rng=928,
|
178 |
+
colorblind_type="Deuteranomaly")
|
179 |
+
np_colors = (np.array(c_colors) * 255).astype(np.uint8)
|
180 |
+
# Get images with clusters
|
181 |
+
pil_imgs = [pd["img"] for pd in patch_descs]
|
182 |
+
res_imgs = [] # List[PIL.Image]
|
183 |
+
pr(0, desc="Generating cluster assignment images")
|
184 |
+
for i, pil_img in enumerate(pil_imgs):
|
185 |
+
# Descriptor assignment image: [h, w, 3]
|
186 |
+
da: torch.Tensor = desc_assignments[i] # ['h', 'w']
|
187 |
+
da_img = np.zeros((*da.shape, 3), dtype=np.uint8)
|
188 |
+
for c in range(num_c):
|
189 |
+
da_img[da == c] = np_colors[c]
|
190 |
+
# Background image: [h, w, 3]
|
191 |
+
img_np = np.array(pil_img, dtype=np.uint8)
|
192 |
+
h, w, c = np.array(img_np).shape
|
193 |
+
h_p, w_p = (h // 14), (w // 14)
|
194 |
+
h_new, w_new = h_p * 14, w_p * 14
|
195 |
+
img_np = F.interpolate(torch.tensor(img_np)\
|
196 |
+
.permute(2, 0, 1)[None, ...], (h_new, w_new),
|
197 |
+
mode='nearest')[0].permute(1, 2, 0).numpy()
|
198 |
+
res_img = cv.addWeighted(img_np, 1 - alpha, da_img, alpha, 0.)
|
199 |
+
res_imgs.append(Image.fromarray(res_img))
|
200 |
+
pr((i+1) / len(pil_imgs))
|
201 |
+
pr(1.0)
|
202 |
+
return res_imgs, "Cluster assignment images generated"
|
203 |
+
|
204 |
+
|
205 |
+
# %%
|
206 |
+
print("Interface build started")
|
207 |
+
# Build the interface
|
208 |
+
with gr.Blocks() as demo:
|
209 |
+
# ---- Helper functions ----
|
210 |
+
# Variable number of input images
|
211 |
+
def var_num_img(s):
|
212 |
+
n = int(s) # Slider value as int
|
213 |
+
return [gr.Image.update(label=f"Image {i+1}", visible=True) \
|
214 |
+
for i in range(n)] + [gr.Image.update(visible=False) \
|
215 |
+
for _ in range(max_num_imgs - n)]
|
216 |
+
|
217 |
+
# ---- State declarations ----
|
218 |
+
vlad = gr.State() # VLAD object
|
219 |
+
desc_assignments = gr.State() # Cluster assignments
|
220 |
+
imgs_batch = gr.State() # Images as batch
|
221 |
+
patch_descs = gr.State() # Patch descriptors
|
222 |
+
|
223 |
+
# ---- All UI elements ----
|
224 |
+
d_vals = [k.title() for k in DOMAINS]
|
225 |
+
domain = gr.Radio(d_vals, value=d_vals[0])
|
226 |
+
nimg_s = gr.Slider(1, max_num_imgs, value=1, step=1,
|
227 |
+
label="How many images?") # How many images?
|
228 |
+
with gr.Row(): # Dynamic row (images in columns)
|
229 |
+
imgs = [gr.Image(label=f"Image {i+1}", visible=True) \
|
230 |
+
for i in range(nimg_s.value)] + \
|
231 |
+
[gr.Image(visible=False) \
|
232 |
+
for _ in range(max_num_imgs - nimg_s.value)]
|
233 |
+
for i, img in enumerate(imgs): # Set image as "input"
|
234 |
+
img.change(lambda _: None, img)
|
235 |
+
with gr.Row(): # Dynamic row of output (cluster) images
|
236 |
+
imgs2 = [gr.Image(label=f"VLAD Clusters {i+1}",
|
237 |
+
visible=False) for i in range(max_num_imgs)]
|
238 |
+
nimg_s.change(var_num_img, nimg_s, imgs)
|
239 |
+
blend_alpha = gr.Slider(0, 1, 0.4, step=0.01, # Cluster centers
|
240 |
+
label="Blend alpha (weight for cluster centers)")
|
241 |
+
bttn1 = gr.Button("Click Me!") # Cluster assignment
|
242 |
+
out_msg1 = gr.Markdown("Select domain and upload images")
|
243 |
+
out_msg2 = gr.Markdown("For descriptor extraction")
|
244 |
+
out_msg3 = gr.Markdown("Followed by VLAD assignment")
|
245 |
+
out_msg4 = gr.Markdown("Followed by cluster images")
|
246 |
+
|
247 |
+
# ---- Utility functions ----
|
248 |
+
# A wrapper to batch the images
|
249 |
+
def batch_images(data):
|
250 |
+
sv = data[nimg_s]
|
251 |
+
images: List[np.ndarray] = [data[imgs[k]] \
|
252 |
+
for k in range(sv)]
|
253 |
+
return images
|
254 |
+
# A wrapper to unbatch images (and pad to max)
|
255 |
+
def unbatch_images(imgs_batch):
|
256 |
+
ret = [gr.Image.update(visible=False) \
|
257 |
+
for _ in range(max_num_imgs)]
|
258 |
+
if imgs_batch is None or len(imgs_batch) == 0:
|
259 |
+
return ret
|
260 |
+
for i, img_pil in enumerate(imgs_batch):
|
261 |
+
img_np = np.array(img_pil)
|
262 |
+
ret[i] = gr.Image.update(img_np, visible=True)
|
263 |
+
return ret
|
264 |
+
|
265 |
+
# ---- Main pipeline ----
|
266 |
+
# Get the VLAD cluster assignment images on click
|
267 |
+
bttn1.click(get_vlad_clusters, domain, [out_msg1, vlad])\
|
268 |
+
.then(batch_images, {nimg_s, *imgs, imgs_batch}, imgs_batch)\
|
269 |
+
.then(get_descs, imgs_batch, [patch_descs, out_msg2])\
|
270 |
+
.then(assign_vlad, [patch_descs, vlad],
|
271 |
+
[desc_assignments, out_msg3])\
|
272 |
+
.then(get_ca_images,
|
273 |
+
[desc_assignments, patch_descs, blend_alpha],
|
274 |
+
[imgs_batch, out_msg4])\
|
275 |
+
.then(unbatch_images, imgs_batch, imgs2)
|
276 |
+
# If the blending changes now, update the cluster images
|
277 |
+
blend_alpha.change(get_ca_images,
|
278 |
+
[desc_assignments, patch_descs, blend_alpha],
|
279 |
+
[imgs_batch, out_msg4])\
|
280 |
+
.then(unbatch_images, imgs_batch, imgs2)
|
281 |
+
|
282 |
+
print("Interface build completed")
|
283 |
+
|
284 |
+
|
285 |
+
# %%
|
286 |
+
# Deploy application
|
287 |
+
demo.queue().launch(share=share)
|
288 |
+
print("Application deployment ended, exiting...")
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
python3-opencv
|
2 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv-python
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
torchaudio
|
6 |
+
pillow
|
7 |
+
matplotlib
|
8 |
+
distinctipy
|
9 |
+
einops
|
10 |
+
fast_pytorch_kmeans
|
11 |
+
|
utilities.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# A portable utility module for the demo programs
|
2 |
+
|
3 |
+
|
4 |
+
# %%
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
import einops as ein
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
import fast_pytorch_kmeans as fpk
|
12 |
+
from typing import Literal, Union, List
|
13 |
+
|
14 |
+
|
15 |
+
# %%
|
16 |
+
# Extract features from a Dino-v2 model
|
17 |
+
_DINO_V2_MODELS = Literal["dinov2_vits14", "dinov2_vitb14", \
|
18 |
+
"dinov2_vitl14", "dinov2_vitg14"]
|
19 |
+
_DINO_FACETS = Literal["query", "key", "value", "token"]
|
20 |
+
class DinoV2ExtractFeatures:
|
21 |
+
"""
|
22 |
+
Extract features from an intermediate layer in Dino-v2
|
23 |
+
"""
|
24 |
+
def __init__(self, dino_model: _DINO_V2_MODELS, layer: int,
|
25 |
+
facet: _DINO_FACETS="token", use_cls=False,
|
26 |
+
norm_descs=True, device: str = "cpu") -> None:
|
27 |
+
"""
|
28 |
+
Parameters:
|
29 |
+
- dino_model: The DINO-v2 model to use
|
30 |
+
- layer: The layer to extract features from
|
31 |
+
- facet: "query", "key", or "value" for the attention
|
32 |
+
facets. "token" for the output of the layer.
|
33 |
+
- use_cls: If True, the CLS token (first item) is also
|
34 |
+
included in the returned list of descriptors.
|
35 |
+
Otherwise, only patch descriptors are used.
|
36 |
+
- norm_descs: If True, the descriptors are normalized
|
37 |
+
- device: PyTorch device to use
|
38 |
+
"""
|
39 |
+
self.vit_type: str = dino_model
|
40 |
+
self.dino_model: nn.Module = torch.hub.load(
|
41 |
+
'facebookresearch/dinov2', dino_model)
|
42 |
+
self.device = torch.device(device)
|
43 |
+
self.dino_model = self.dino_model.eval().to(self.device)
|
44 |
+
self.layer: int = layer
|
45 |
+
self.facet = facet
|
46 |
+
if self.facet == "token":
|
47 |
+
self.fh_handle = self.dino_model.blocks[self.layer].\
|
48 |
+
register_forward_hook(
|
49 |
+
self._generate_forward_hook())
|
50 |
+
else:
|
51 |
+
self.fh_handle = self.dino_model.blocks[self.layer].\
|
52 |
+
attn.qkv.register_forward_hook(
|
53 |
+
self._generate_forward_hook())
|
54 |
+
self.use_cls = use_cls
|
55 |
+
self.norm_descs = norm_descs
|
56 |
+
# Hook data
|
57 |
+
self._hook_out = None
|
58 |
+
|
59 |
+
def _generate_forward_hook(self):
|
60 |
+
def _forward_hook(module, inputs, output):
|
61 |
+
self._hook_out = output
|
62 |
+
return _forward_hook
|
63 |
+
|
64 |
+
def __call__(self, img: torch.Tensor) -> torch.Tensor:
|
65 |
+
"""
|
66 |
+
Parameters:
|
67 |
+
- img: The input image
|
68 |
+
"""
|
69 |
+
with torch.no_grad():
|
70 |
+
res = self.dino_model(img)
|
71 |
+
if self.use_cls:
|
72 |
+
res = self._hook_out
|
73 |
+
else:
|
74 |
+
res = self._hook_out[:, 1:, ...]
|
75 |
+
if self.facet in ["query", "key", "value"]:
|
76 |
+
d_len = res.shape[2] // 3
|
77 |
+
if self.facet == "query":
|
78 |
+
res = res[:, :, :d_len]
|
79 |
+
elif self.facet == "key":
|
80 |
+
res = res[:, :, d_len:2*d_len]
|
81 |
+
else:
|
82 |
+
res = res[:, :, 2*d_len:]
|
83 |
+
if self.norm_descs:
|
84 |
+
res = F.normalize(res, dim=-1)
|
85 |
+
self._hook_out = None # Reset the hook
|
86 |
+
return res
|
87 |
+
|
88 |
+
def __del__(self):
|
89 |
+
self.fh_handle.remove()
|
90 |
+
|
91 |
+
|
92 |
+
# %%
|
93 |
+
# VLAD global descriptor implementation
|
94 |
+
class VLAD:
|
95 |
+
"""
|
96 |
+
An implementation of VLAD algorithm given database and query
|
97 |
+
descriptors.
|
98 |
+
|
99 |
+
Constructor arguments:
|
100 |
+
- num_clusters: Number of cluster centers for VLAD
|
101 |
+
- desc_dim: Descriptor dimension. If None, then it is
|
102 |
+
inferred when running `fit` method.
|
103 |
+
- intra_norm: If True, intra normalization is applied
|
104 |
+
when constructing VLAD
|
105 |
+
- norm_descs: If True, the given descriptors are
|
106 |
+
normalized before training and predicting
|
107 |
+
VLAD descriptors. Different from the
|
108 |
+
`intra_norm` argument.
|
109 |
+
- dist_mode: Distance mode for KMeans clustering for
|
110 |
+
vocabulary (not residuals). Must be in
|
111 |
+
{'euclidean', 'cosine'}.
|
112 |
+
- vlad_mode: Mode for descriptor assignment (to cluster
|
113 |
+
centers) in VLAD generation. Must be in
|
114 |
+
{'soft', 'hard'}
|
115 |
+
- soft_temp: Temperature for softmax (if 'vald_mode' is
|
116 |
+
'soft') for assignment
|
117 |
+
- cache_dir: Directory to cache the VLAD vectors. If
|
118 |
+
None, then no caching is done. If a str,
|
119 |
+
then it is assumed as the folder path. Use
|
120 |
+
absolute paths.
|
121 |
+
|
122 |
+
Notes:
|
123 |
+
- Arandjelovic, Relja, and Andrew Zisserman. "All about VLAD."
|
124 |
+
Proceedings of the IEEE conference on Computer Vision and
|
125 |
+
Pattern Recognition. 2013.
|
126 |
+
"""
|
127 |
+
def __init__(self, num_clusters: int,
|
128 |
+
desc_dim: Union[int, None]=None,
|
129 |
+
intra_norm: bool=True, norm_descs: bool=True,
|
130 |
+
dist_mode: str="cosine", vlad_mode: str="hard",
|
131 |
+
soft_temp: float=1.0,
|
132 |
+
cache_dir: Union[str,None]=None) -> None:
|
133 |
+
self.num_clusters = num_clusters
|
134 |
+
self.desc_dim = desc_dim
|
135 |
+
self.intra_norm = intra_norm
|
136 |
+
self.norm_descs = norm_descs
|
137 |
+
self.mode = dist_mode
|
138 |
+
self.vlad_mode = str(vlad_mode).lower()
|
139 |
+
assert self.vlad_mode in ['soft', 'hard']
|
140 |
+
self.soft_temp = soft_temp
|
141 |
+
# Set in the training phase
|
142 |
+
self.c_centers = None
|
143 |
+
self.kmeans = None
|
144 |
+
# Set the caching
|
145 |
+
self.cache_dir = cache_dir
|
146 |
+
if self.cache_dir is not None:
|
147 |
+
self.cache_dir = os.path.abspath(os.path.expanduser(
|
148 |
+
self.cache_dir))
|
149 |
+
if not os.path.exists(self.cache_dir):
|
150 |
+
os.makedirs(self.cache_dir)
|
151 |
+
print(f"Created cache directory: {self.cache_dir}")
|
152 |
+
else:
|
153 |
+
print("Warning: Cache directory already exists: " \
|
154 |
+
f"{self.cache_dir}")
|
155 |
+
else:
|
156 |
+
print("VLAD caching is disabled.")
|
157 |
+
|
158 |
+
def can_use_cache_vlad(self):
|
159 |
+
"""
|
160 |
+
Checks if the cache directory is a valid cache directory.
|
161 |
+
For it to be valid, it must exist and should at least
|
162 |
+
include the cluster centers file.
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
- True if the cache directory is valid
|
166 |
+
- False if
|
167 |
+
- the cache directory doesn't exist
|
168 |
+
- exists but doesn't contain the cluster centers
|
169 |
+
- no caching is set in constructor
|
170 |
+
"""
|
171 |
+
if self.cache_dir is None:
|
172 |
+
return False
|
173 |
+
if not os.path.exists(self.cache_dir):
|
174 |
+
return False
|
175 |
+
if os.path.exists(f"{self.cache_dir}/c_centers.pt"):
|
176 |
+
return True
|
177 |
+
else:
|
178 |
+
return False
|
179 |
+
|
180 |
+
def can_use_cache_ids(self,
|
181 |
+
cache_ids: Union[List[str], str, None],
|
182 |
+
only_residuals: bool=False) -> bool:
|
183 |
+
"""
|
184 |
+
Checks if the given cache IDs exist in the cache directory
|
185 |
+
and returns True if all of them exist.
|
186 |
+
The cache is stored in the following files:
|
187 |
+
- c_centers.pt: Cluster centers
|
188 |
+
- `cache_id`_r.pt: Residuals for VLAD
|
189 |
+
- `cache_id`_l.pt: Labels for VLAD (hard assignment)
|
190 |
+
- `cache_id`_s.pt: Soft assignment for VLAD
|
191 |
+
|
192 |
+
The function returns False if cache cannot be used or if
|
193 |
+
any of the cache IDs are not found. If all cache IDs are
|
194 |
+
found, then True is returned.
|
195 |
+
|
196 |
+
This function is mainly for use outside the VLAD class.
|
197 |
+
"""
|
198 |
+
if not self.can_use_cache_vlad():
|
199 |
+
return False
|
200 |
+
if cache_ids is None:
|
201 |
+
return False
|
202 |
+
if isinstance(cache_ids, str):
|
203 |
+
cache_ids = [cache_ids]
|
204 |
+
for cache_id in cache_ids:
|
205 |
+
if not os.path.exists(
|
206 |
+
f"{self.cache_dir}/{cache_id}_r.pt"):
|
207 |
+
return False
|
208 |
+
if self.vlad_mode == "hard" and not os.path.exists(
|
209 |
+
f"{self.cache_dir}/{cache_id}_l.pt") and not \
|
210 |
+
only_residuals:
|
211 |
+
return False
|
212 |
+
if self.vlad_mode == "soft" and not os.path.exists(
|
213 |
+
f"{self.cache_dir}/{cache_id}_s.pt") and not \
|
214 |
+
only_residuals:
|
215 |
+
return False
|
216 |
+
return True
|
217 |
+
|
218 |
+
# Generate cluster centers
|
219 |
+
def fit(self, train_descs: Union[np.ndarray, torch.Tensor, None]):
|
220 |
+
"""
|
221 |
+
Using the training descriptors, generate the cluster
|
222 |
+
centers (vocabulary). Function expects all descriptors in
|
223 |
+
a single list (see `fit_and_generate` for a batch of
|
224 |
+
images).
|
225 |
+
If the cache directory is valid, then retrieves cluster
|
226 |
+
centers from there (the `train_descs` are ignored).
|
227 |
+
Otherwise, stores the cluster centers in the cache
|
228 |
+
directory (if using caching).
|
229 |
+
|
230 |
+
Parameters:
|
231 |
+
- train_descs: Training descriptors of shape
|
232 |
+
[num_train_desc, desc_dim]. If None, then
|
233 |
+
caching should be valid (else ValueError).
|
234 |
+
"""
|
235 |
+
# Clustering to create vocabulary
|
236 |
+
self.kmeans = fpk.KMeans(self.num_clusters, mode=self.mode)
|
237 |
+
# Check if cache exists
|
238 |
+
if self.can_use_cache_vlad():
|
239 |
+
print("Using cached cluster centers")
|
240 |
+
self.c_centers = torch.load(
|
241 |
+
f"{self.cache_dir}/c_centers.pt")
|
242 |
+
self.kmeans.centroids = self.c_centers
|
243 |
+
if self.desc_dim is None:
|
244 |
+
self.desc_dim = self.c_centers.shape[1]
|
245 |
+
print(f"Desc dim set to {self.desc_dim}")
|
246 |
+
else:
|
247 |
+
if train_descs is None:
|
248 |
+
raise ValueError("No training descriptors given")
|
249 |
+
if type(train_descs) == np.ndarray:
|
250 |
+
train_descs = torch.from_numpy(train_descs).\
|
251 |
+
to(torch.float32)
|
252 |
+
if self.desc_dim is None:
|
253 |
+
self.desc_dim = train_descs.shape[1]
|
254 |
+
if self.norm_descs:
|
255 |
+
train_descs = F.normalize(train_descs)
|
256 |
+
self.kmeans.fit(train_descs)
|
257 |
+
self.c_centers = self.kmeans.centroids
|
258 |
+
if self.cache_dir is not None:
|
259 |
+
print("Caching cluster centers")
|
260 |
+
torch.save(self.c_centers,
|
261 |
+
f"{self.cache_dir}/c_centers.pt")
|
262 |
+
|
263 |
+
def fit_and_generate(self,
|
264 |
+
train_descs: Union[np.ndarray, torch.Tensor]) \
|
265 |
+
-> torch.Tensor:
|
266 |
+
"""
|
267 |
+
Given a batch of descriptors over images, `fit` the VLAD
|
268 |
+
and generate the global descriptors for the training
|
269 |
+
images. Use only when there are a fixed number of
|
270 |
+
descriptors in each image.
|
271 |
+
|
272 |
+
Parameters:
|
273 |
+
- train_descs: Training image descriptors of shape
|
274 |
+
[num_imgs, num_descs, desc_dim]. There are
|
275 |
+
'num_imgs' images, each image has
|
276 |
+
'num_descs' descriptors and each
|
277 |
+
descriptor is 'desc_dim' dimensional.
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
- train_vlads: The VLAD vectors of all training images.
|
281 |
+
Shape: [num_imgs, num_clusters*desc_dim]
|
282 |
+
"""
|
283 |
+
# Generate vocabulary
|
284 |
+
all_descs = ein.rearrange(train_descs, "n k d -> (n k) d")
|
285 |
+
self.fit(all_descs)
|
286 |
+
# For each image, stack VLAD
|
287 |
+
return torch.stack([self.generate(tr) for tr in train_descs])
|
288 |
+
|
289 |
+
def generate(self, query_descs: Union[np.ndarray, torch.Tensor],
|
290 |
+
cache_id: Union[str, None]=None) -> torch.Tensor:
|
291 |
+
"""
|
292 |
+
Given the query descriptors, generate a VLAD vector. Call
|
293 |
+
`fit` before using this method. Use this for only single
|
294 |
+
images and with descriptors stacked. Use function
|
295 |
+
`generate_multi` for multiple images.
|
296 |
+
|
297 |
+
Parameters:
|
298 |
+
- query_descs: Query descriptors of shape [n_q, desc_dim]
|
299 |
+
where 'n_q' is number of 'desc_dim'
|
300 |
+
dimensional descriptors in a query image.
|
301 |
+
- cache_id: If not None, then the VLAD vector is
|
302 |
+
constructed using the residual and labels
|
303 |
+
from this file.
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
- n_vlas: Normalized VLAD: [num_clusters*desc_dim]
|
307 |
+
"""
|
308 |
+
residuals = self.generate_res_vec(query_descs, cache_id)
|
309 |
+
# Un-normalized VLAD vector: [c*d,]
|
310 |
+
un_vlad = torch.zeros(self.num_clusters * self.desc_dim)
|
311 |
+
if self.vlad_mode == 'hard':
|
312 |
+
# Get labels for assignment of descriptors
|
313 |
+
if cache_id is not None and self.can_use_cache_vlad() \
|
314 |
+
and os.path.isfile(
|
315 |
+
f"{self.cache_dir}/{cache_id}_l.pt"):
|
316 |
+
labels = torch.load(
|
317 |
+
f"{self.cache_dir}/{cache_id}_l.pt")
|
318 |
+
else:
|
319 |
+
labels = self.kmeans.predict(query_descs) # [q]
|
320 |
+
if cache_id is not None and self.can_use_cache_vlad():
|
321 |
+
torch.save(labels,
|
322 |
+
f"{self.cache_dir}/{cache_id}_l.pt")
|
323 |
+
# Create VLAD from residuals and labels
|
324 |
+
used_clusters = set(labels.numpy())
|
325 |
+
for k in used_clusters:
|
326 |
+
# Sum of residuals for the descriptors in the cluster
|
327 |
+
# Shape:[q, c, d] -> [q', d] -> [d]
|
328 |
+
cd_sum = residuals[labels==k,k].sum(dim=0)
|
329 |
+
if self.intra_norm:
|
330 |
+
cd_sum = F.normalize(cd_sum, dim=0)
|
331 |
+
un_vlad[k*self.desc_dim:(k+1)*self.desc_dim] = cd_sum
|
332 |
+
else: # Soft cluster assignment
|
333 |
+
# Cosine similarity: 1 = close, -1 = away
|
334 |
+
if cache_id is not None and self.can_use_cache_vlad() \
|
335 |
+
and os.path.isfile(
|
336 |
+
f"{self.cache_dir}/{cache_id}_s.pt"):
|
337 |
+
soft_assign = torch.load(
|
338 |
+
f"{self.cache_dir}/{cache_id}_s.pt")
|
339 |
+
else:
|
340 |
+
cos_sims = F.cosine_similarity( # [q, c]
|
341 |
+
ein.rearrange(query_descs, "q d -> q 1 d"),
|
342 |
+
ein.rearrange(self.c_centers, "c d -> 1 c d"),
|
343 |
+
dim=2)
|
344 |
+
soft_assign = F.softmax(self.soft_temp*cos_sims,
|
345 |
+
dim=1)
|
346 |
+
if cache_id is not None and self.can_use_cache_vlad():
|
347 |
+
torch.save(soft_assign,
|
348 |
+
f"{self.cache_dir}/{cache_id}_s.pt")
|
349 |
+
# Soft assignment scores (as probabilities): [q, c]
|
350 |
+
for k in range(0, self.num_clusters):
|
351 |
+
w = ein.rearrange(soft_assign[:, k], "q -> q 1 1")
|
352 |
+
# Sum of residuals for all descriptors (for cluster k)
|
353 |
+
cd_sum = ein.rearrange(w * residuals,
|
354 |
+
"q c d -> (q c) d").sum(dim=0) # [d]
|
355 |
+
if self.intra_norm:
|
356 |
+
cd_sum = F.normalize(cd_sum, dim=0)
|
357 |
+
un_vlad[k*self.desc_dim:(k+1)*self.desc_dim] = cd_sum
|
358 |
+
# Normalize the VLAD vector
|
359 |
+
n_vlad = F.normalize(un_vlad, dim=0)
|
360 |
+
return n_vlad
|
361 |
+
|
362 |
+
def generate_multi(self,
|
363 |
+
multi_query: Union[np.ndarray, torch.Tensor, list],
|
364 |
+
cache_ids: Union[List[str], None]=None) \
|
365 |
+
-> Union[torch.Tensor, list]:
|
366 |
+
"""
|
367 |
+
Given query descriptors from multiple images, generate
|
368 |
+
the VLAD for them.
|
369 |
+
|
370 |
+
Parameters:
|
371 |
+
- multi_query: Descriptors of shape [n_imgs, n_kpts, d]
|
372 |
+
There are 'n_imgs' and each image has
|
373 |
+
'n_kpts' keypoints, with 'd' dimensional
|
374 |
+
descriptor each. If a List (can then have
|
375 |
+
different number of keypoints in each
|
376 |
+
image), then the result is also a list.
|
377 |
+
- cache_ids: Cache IDs for the VLAD vectors. If None,
|
378 |
+
then no caching is done (stored or
|
379 |
+
retrieved). If a list, then the length
|
380 |
+
should be 'n_imgs' (one per image).
|
381 |
+
|
382 |
+
Returns:
|
383 |
+
- multi_res: VLAD descriptors for the queries
|
384 |
+
"""
|
385 |
+
if cache_ids is None:
|
386 |
+
cache_ids = [None] * len(multi_query)
|
387 |
+
res = [self.generate(q, c) \
|
388 |
+
for (q, c) in zip(multi_query, cache_ids)]
|
389 |
+
try: # Most likely pytorch
|
390 |
+
res = torch.stack(res)
|
391 |
+
except TypeError:
|
392 |
+
try: # Otherwise numpy
|
393 |
+
res = np.stack(res)
|
394 |
+
except TypeError:
|
395 |
+
pass # Let it remain as a list
|
396 |
+
return res
|
397 |
+
|
398 |
+
def generate_res_vec(self,
|
399 |
+
query_descs: Union[np.ndarray, torch.Tensor],
|
400 |
+
cache_id: Union[str, None]=None) -> torch.Tensor:
|
401 |
+
"""
|
402 |
+
Given the query descriptors, generate a VLAD vector. Call
|
403 |
+
`fit` before using this method. Use this for only single
|
404 |
+
images and with descriptors stacked. Use function
|
405 |
+
`generate_multi` for multiple images.
|
406 |
+
|
407 |
+
Parameters:
|
408 |
+
- query_descs: Query descriptors of shape [n_q, desc_dim]
|
409 |
+
where 'n_q' is number of 'desc_dim'
|
410 |
+
dimensional descriptors in a query image.
|
411 |
+
- cache_id: If not None, then the VLAD vector is
|
412 |
+
constructed using the residual and labels
|
413 |
+
from this file.
|
414 |
+
|
415 |
+
Returns:
|
416 |
+
- residuals: Residual vector: shape [n_q, n_c, d]
|
417 |
+
"""
|
418 |
+
assert self.kmeans is not None
|
419 |
+
assert self.c_centers is not None
|
420 |
+
# Compute residuals (all query to cluster): [q, c, d]
|
421 |
+
if cache_id is not None and self.can_use_cache_vlad() and \
|
422 |
+
os.path.isfile(f"{self.cache_dir}/{cache_id}_r.pt"):
|
423 |
+
residuals = torch.load(
|
424 |
+
f"{self.cache_dir}/{cache_id}_r.pt")
|
425 |
+
else:
|
426 |
+
if type(query_descs) == np.ndarray:
|
427 |
+
query_descs = torch.from_numpy(query_descs)\
|
428 |
+
.to(torch.float32)
|
429 |
+
if self.norm_descs:
|
430 |
+
query_descs = F.normalize(query_descs)
|
431 |
+
residuals = ein.rearrange(query_descs, "q d -> q 1 d") \
|
432 |
+
- ein.rearrange(self.c_centers, "c d -> 1 c d")
|
433 |
+
if cache_id is not None and self.can_use_cache_vlad():
|
434 |
+
cid_dir = f"{self.cache_dir}/"\
|
435 |
+
f"{os.path.split(cache_id)[0]}"
|
436 |
+
if not os.path.isdir(cid_dir):
|
437 |
+
os.makedirs(cid_dir)
|
438 |
+
print(f"Created directory: {cid_dir}")
|
439 |
+
torch.save(residuals,
|
440 |
+
f"{self.cache_dir}/{cache_id}_r.pt")
|
441 |
+
# print("residuals",residuals.shape)
|
442 |
+
return residuals
|
443 |
+
|
444 |
+
def generate_multi_res_vec(self,
|
445 |
+
multi_query: Union[np.ndarray, torch.Tensor, list],
|
446 |
+
cache_ids: Union[List[str], None]=None) \
|
447 |
+
-> Union[torch.Tensor, list]:
|
448 |
+
"""
|
449 |
+
Given query descriptors from multiple images, generate
|
450 |
+
the VLAD for them.
|
451 |
+
|
452 |
+
Parameters:
|
453 |
+
- multi_query: Descriptors of shape [n_imgs, n_kpts, d]
|
454 |
+
There are 'n_imgs' and each image has
|
455 |
+
'n_kpts' keypoints, with 'd' dimensional
|
456 |
+
descriptor each. If a List (can then have
|
457 |
+
different number of keypoints in each
|
458 |
+
image), then the result is also a list.
|
459 |
+
- cache_ids: Cache IDs for the VLAD vectors. If None,
|
460 |
+
then no caching is done (stored or
|
461 |
+
retrieved). If a list, then the length
|
462 |
+
should be 'n_imgs' (one per image).
|
463 |
+
|
464 |
+
Returns:
|
465 |
+
- multi_res: VLAD descriptors for the queries
|
466 |
+
"""
|
467 |
+
if cache_ids is None:
|
468 |
+
cache_ids = [None] * len(multi_query)
|
469 |
+
res = [self.generate_res_vec(q, c) \
|
470 |
+
for (q, c) in zip(multi_query, cache_ids)]
|
471 |
+
try: # Most likely pytorch
|
472 |
+
res = torch.stack(res)
|
473 |
+
except TypeError:
|
474 |
+
try: # Otherwise numpy
|
475 |
+
res = np.stack(res)
|
476 |
+
except TypeError:
|
477 |
+
pass # Let it remain as a list
|
478 |
+
return res
|