Spaces:
Running
on
Zero
Running
on
Zero
TheStinger
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import requests
|
3 |
import random
|
4 |
import os
|
5 |
-
import zipfile
|
6 |
import librosa
|
7 |
import time
|
8 |
from infer_rvc_python import BaseLoader
|
@@ -11,12 +11,10 @@ from tts_voice import tts_order_voice
|
|
11 |
import edge_tts
|
12 |
import tempfile
|
13 |
import anyio
|
14 |
-
from audio_separator.separator import Separator
|
15 |
|
16 |
|
17 |
language_dict = tts_order_voice
|
18 |
|
19 |
-
# ilaria tts implementation :rofl:
|
20 |
async def text_to_speech_edge(text, language_code):
|
21 |
voice = language_dict[language_code]
|
22 |
communicate = edge_tts.Communicate(text, voice)
|
@@ -27,7 +25,6 @@ async def text_to_speech_edge(text, language_code):
|
|
27 |
|
28 |
return tmp_path
|
29 |
|
30 |
-
# fucking dogshit toggle
|
31 |
try:
|
32 |
import spaces
|
33 |
spaces_status = True
|
@@ -65,51 +62,50 @@ UVR_5_MODELS = [
|
|
65 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
66 |
|
67 |
def unzip_file(file):
|
68 |
-
filename = os.path.basename(file).split(".")[0]
|
69 |
with zipfile.ZipFile(file, 'r') as zip_ref:
|
70 |
-
zip_ref.extractall(os.path.join(TEMP_DIR, filename))
|
71 |
return True
|
72 |
|
73 |
|
74 |
-
def progress_bar(total, current):
|
75 |
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"
|
76 |
|
77 |
def download_from_url(url, filename=None):
|
78 |
if "/blob/" in url:
|
79 |
-
url = url.replace("/blob/", "/resolve/")
|
80 |
if "huggingface" not in url:
|
81 |
return ["The URL must be from huggingface", "Failed", "Failed"]
|
82 |
if filename is None:
|
83 |
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
|
84 |
response = requests.get(url)
|
85 |
-
total = int(response.headers.get('content-length', 0))
|
86 |
if total > 500000000:
|
87 |
|
88 |
return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"]
|
89 |
current = 0
|
90 |
with open(filename, "wb") as f:
|
91 |
-
for data in response.iter_content(chunk_size=4096):
|
92 |
f.write(data)
|
93 |
current += len(data)
|
94 |
-
print(progress_bar(total, current), end="\r")
|
95 |
|
96 |
-
# unzip because the model is in a zip file lel
|
97 |
|
98 |
try:
|
99 |
unzip_file(filename)
|
100 |
except Exception as e:
|
101 |
-
return ["Failed to unzip the file", "Failed", "Failed"]
|
102 |
-
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
|
103 |
pth_files = []
|
104 |
index_files = []
|
105 |
-
for root, dirs, files in os.walk(unzipped_dir):
|
106 |
for file in files:
|
107 |
if file.endswith(".pth"):
|
108 |
pth_files.append(os.path.join(root, file))
|
109 |
elif file.endswith(".index"):
|
110 |
index_files.append(os.path.join(root, file))
|
111 |
|
112 |
-
print(pth_files, index_files)
|
113 |
global pth_file
|
114 |
global index_file
|
115 |
pth_file = pth_files[0]
|
@@ -162,7 +158,7 @@ def calculate_remaining_time(epochs, seconds_per_epoch):
|
|
162 |
else:
|
163 |
return f"{int(hours)} hours and {int(minutes)} minutes"
|
164 |
|
165 |
-
def inf_handler(audio, model_name):
|
166 |
model_found = False
|
167 |
for model_info in UVR_5_MODELS:
|
168 |
if model_info["model_name"] == model_name:
|
@@ -241,22 +237,31 @@ def upload_model(index_file, pth_file):
|
|
241 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria RVC π") as demo:
|
242 |
gr.Markdown("## Ilaria RVC π")
|
243 |
with gr.Tab("Inference"):
|
244 |
-
sound_gui = gr.Audio(value=None,type="filepath",autoplay=False,visible=True
|
245 |
-
pth_file_ui = gr.Textbox(label="Model pth file",value=pth_file,visible=False,interactive=False
|
246 |
-
index_file_ui = gr.Textbox(label="Index pth file",value=index_file,visible=False,interactive=False
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
with gr.Accordion("Settings", open=False):
|
249 |
-
pitch_algo_conf = gr.Dropdown(PITCH_ALGO_OPT,value=PITCH_ALGO_OPT[4],label="Pitch algorithm",visible=True,interactive=True
|
250 |
-
pitch_lvl_conf = gr.Slider(label="Pitch level (lower -> 'male' while higher -> 'female')",minimum=-24,maximum=24,step=1,value=0,visible=True,interactive=True
|
251 |
-
index_inf_conf =
|
252 |
-
respiration_filter_conf = gr.Slider(minimum=0,maximum=7,label="Respiration median filtering",value=3,step=1,interactive=True
|
253 |
-
envelope_ratio_conf = gr.Slider(minimum=0,maximum=1,label="Envelope ratio",value=0.25,interactive=True
|
254 |
-
consonant_protec_conf = gr.Slider(minimum=0,maximum=0.5,label="Consonant breath protection",value=0.5,interactive=True
|
255 |
-
|
256 |
-
button_conf = gr.Button("Convert",variant="primary"
|
257 |
-
output_conf = gr.Audio(type="filepath",label="Output"
|
258 |
-
|
259 |
-
button_conf.click(lambda
|
260 |
button_conf.click(
|
261 |
run,
|
262 |
inputs=[
|
@@ -270,17 +275,6 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose")
|
|
270 |
],
|
271 |
outputs=[output_conf],
|
272 |
)
|
273 |
-
|
274 |
-
with gr.Tab("Ilaria TTS"):
|
275 |
-
text_tts = gr.Textbox(label="Text", placeholder="Hello!", lines=3, interactive=True,)
|
276 |
-
dropdown_tts = gr.Dropdown(label="Language and Model",choices=list(language_dict.keys()),interactive=True, value=list(language_dict.keys())[0])
|
277 |
-
|
278 |
-
button_tts = gr.Button("Speak", variant="primary",)
|
279 |
-
|
280 |
-
output_tts = gr.Audio(type="filepath", label="Output",)
|
281 |
-
|
282 |
-
button_tts.click(text_to_speech_edge, inputs=[text_tts, dropdown_tts], outputs=[output_tts])
|
283 |
-
|
284 |
|
285 |
with gr.Tab("Model Loader (Download and Upload)"):
|
286 |
with gr.Accordion("Model Downloader", open=False):
|
@@ -301,20 +295,6 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose")
|
|
301 |
|
302 |
upload_button.click(upload_model, [index_file_upload, pth_file_upload], upload_status)
|
303 |
|
304 |
-
|
305 |
-
with gr.Tab("Vocal Separator (UVR)"):
|
306 |
-
gr.Markdown("Separate vocals and instruments from an audio file using UVR models. - This is only on CPU due to ZeroGPU being ZeroGPU :(")
|
307 |
-
uvr5_audio_file = gr.Audio(label="Audio File",type="filepath")
|
308 |
-
|
309 |
-
with gr.Row():
|
310 |
-
uvr5_model = gr.Dropdown(label="Model", choices=[model["model_name"] for model in UVR_5_MODELS])
|
311 |
-
uvr5_button = gr.Button("Separate Vocals", variant="primary",)
|
312 |
-
|
313 |
-
uvr5_output_voc = gr.Audio(type="filepath", label="Output 1",) # UVR models sometimes output it in a weird way where it's like the positions swap randomly, so let's just call them Outputs lol
|
314 |
-
uvr5_output_inst = gr.Audio(type="filepath", label="Output 2",)
|
315 |
-
|
316 |
-
uvr5_button.click(inference, [uvr5_audio_file, uvr5_model], [uvr5_output_voc, uvr5_output_inst])
|
317 |
-
|
318 |
with gr.Tab("Extra"):
|
319 |
with gr.Accordion("Training Time Calculator", open=False):
|
320 |
with gr.Column():
|
@@ -328,15 +308,18 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose")
|
|
328 |
inputs=[epochs_input, seconds_input],
|
329 |
outputs=[remaining_time_output]
|
330 |
)
|
331 |
-
|
332 |
-
with gr.Accordion("Model Fusion", open=False):
|
333 |
-
gr.Markdown(value="Fusion of two models to create a new model - coming soon! π")
|
334 |
-
|
335 |
-
with gr.Accordion("Model Quantization", open=False):
|
336 |
-
gr.Markdown(value="Quantization of a model to reduce its size - coming soon! π")
|
337 |
|
338 |
-
with gr.Accordion(
|
339 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
with gr.Tab("Credits"):
|
342 |
gr.Markdown(
|
@@ -351,4 +334,4 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose")
|
|
351 |
"""
|
352 |
)
|
353 |
|
354 |
-
demo.queue(api_open=False).launch(show_api=False)
|
|
|
2 |
import requests
|
3 |
import random
|
4 |
import os
|
5 |
+
import zipfile
|
6 |
import librosa
|
7 |
import time
|
8 |
from infer_rvc_python import BaseLoader
|
|
|
11 |
import edge_tts
|
12 |
import tempfile
|
13 |
import anyio
|
|
|
14 |
|
15 |
|
16 |
language_dict = tts_order_voice
|
17 |
|
|
|
18 |
async def text_to_speech_edge(text, language_code):
|
19 |
voice = language_dict[language_code]
|
20 |
communicate = edge_tts.Communicate(text, voice)
|
|
|
25 |
|
26 |
return tmp_path
|
27 |
|
|
|
28 |
try:
|
29 |
import spaces
|
30 |
spaces_status = True
|
|
|
62 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
63 |
|
64 |
def unzip_file(file):
|
65 |
+
filename = os.path.basename(file).split(".")[0]
|
66 |
with zipfile.ZipFile(file, 'r') as zip_ref:
|
67 |
+
zip_ref.extractall(os.path.join(TEMP_DIR, filename))
|
68 |
return True
|
69 |
|
70 |
|
71 |
+
def progress_bar(total, current):
|
72 |
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"
|
73 |
|
74 |
def download_from_url(url, filename=None):
|
75 |
if "/blob/" in url:
|
76 |
+
url = url.replace("/blob/", "/resolve/")
|
77 |
if "huggingface" not in url:
|
78 |
return ["The URL must be from huggingface", "Failed", "Failed"]
|
79 |
if filename is None:
|
80 |
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
|
81 |
response = requests.get(url)
|
82 |
+
total = int(response.headers.get('content-length', 0))
|
83 |
if total > 500000000:
|
84 |
|
85 |
return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"]
|
86 |
current = 0
|
87 |
with open(filename, "wb") as f:
|
88 |
+
for data in response.iter_content(chunk_size=4096):
|
89 |
f.write(data)
|
90 |
current += len(data)
|
91 |
+
print(progress_bar(total, current), end="\r")
|
92 |
|
|
|
93 |
|
94 |
try:
|
95 |
unzip_file(filename)
|
96 |
except Exception as e:
|
97 |
+
return ["Failed to unzip the file", "Failed", "Failed"]
|
98 |
+
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
|
99 |
pth_files = []
|
100 |
index_files = []
|
101 |
+
for root, dirs, files in os.walk(unzipped_dir):
|
102 |
for file in files:
|
103 |
if file.endswith(".pth"):
|
104 |
pth_files.append(os.path.join(root, file))
|
105 |
elif file.endswith(".index"):
|
106 |
index_files.append(os.path.join(root, file))
|
107 |
|
108 |
+
print(pth_files, index_files)
|
109 |
global pth_file
|
110 |
global index_file
|
111 |
pth_file = pth_files[0]
|
|
|
158 |
else:
|
159 |
return f"{int(hours)} hours and {int(minutes)} minutes"
|
160 |
|
161 |
+
def inf_handler(audio, model_name):
|
162 |
model_found = False
|
163 |
for model_info in UVR_5_MODELS:
|
164 |
if model_info["model_name"] == model_name:
|
|
|
237 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria RVC π") as demo:
|
238 |
gr.Markdown("## Ilaria RVC π")
|
239 |
with gr.Tab("Inference"):
|
240 |
+
sound_gui = gr.Audio(value=None, type="filepath", autoplay=False, visible=True)
|
241 |
+
pth_file_ui = gr.Textbox(label="Model pth file", value=pth_file, visible=False, interactive=False)
|
242 |
+
index_file_ui = gr.Textbox(label="Index pth file", value=index_file, visible=False, interactive=False)
|
243 |
+
|
244 |
+
with gr.Accordion("Ilaria TTS", open=False):
|
245 |
+
text_tts = gr.Textbox(label="Text", placeholder="Hello!", lines=3, interactive=True)
|
246 |
+
dropdown_tts = gr.Dropdown(label="Language and Model", choices=list(language_dict.keys()), interactive=True, value=list(language_dict.keys())[0])
|
247 |
+
|
248 |
+
button_tts = gr.Button("Speak", variant="primary")
|
249 |
+
|
250 |
+
# Rimuovi l'output_tts e usa solo sound_gui come output
|
251 |
+
button_tts.click(text_to_speech_edge, inputs=[text_tts, dropdown_tts], outputs=sound_gui)
|
252 |
+
|
253 |
with gr.Accordion("Settings", open=False):
|
254 |
+
pitch_algo_conf = gr.Dropdown(PITCH_ALGO_OPT, value=PITCH_ALGO_OPT[4], label="Pitch algorithm", visible=True, interactive=True)
|
255 |
+
pitch_lvl_conf = gr.Slider(label="Pitch level (lower -> 'male' while higher -> 'female')", minimum=-24, maximum=24, step=1, value=0, visible=True, interactive=True)
|
256 |
+
index_inf_conf = gr.Slider(minimum=0, maximum=1, label="Index influence -> How much accent is applied", value=0.75)
|
257 |
+
respiration_filter_conf = gr.Slider(minimum=0, maximum=7, label="Respiration median filtering", value=3, step=1, interactive=True)
|
258 |
+
envelope_ratio_conf = gr.Slider(minimum=0, maximum=1, label="Envelope ratio", value=0.25, interactive=True)
|
259 |
+
consonant_protec_conf = gr.Slider(minimum=0, maximum=0.5, label="Consonant breath protection", value=0.5, interactive=True)
|
260 |
+
|
261 |
+
button_conf = gr.Button("Convert", variant="primary")
|
262 |
+
output_conf = gr.Audio(type="filepath", label="Output")
|
263 |
+
|
264 |
+
button_conf.click(lambda: None, None, output_conf)
|
265 |
button_conf.click(
|
266 |
run,
|
267 |
inputs=[
|
|
|
275 |
],
|
276 |
outputs=[output_conf],
|
277 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
with gr.Tab("Model Loader (Download and Upload)"):
|
280 |
with gr.Accordion("Model Downloader", open=False):
|
|
|
295 |
|
296 |
upload_button.click(upload_model, [index_file_upload, pth_file_upload], upload_status)
|
297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
with gr.Tab("Extra"):
|
299 |
with gr.Accordion("Training Time Calculator", open=False):
|
300 |
with gr.Column():
|
|
|
308 |
inputs=[epochs_input, seconds_input],
|
309 |
outputs=[remaining_time_output]
|
310 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
with gr.Accordion('Training Helper', open=False):
|
313 |
+
with gr.Column():
|
314 |
+
audio_input = gr.Audio(type="filepath", label="Upload your audio file")
|
315 |
+
gr.Text("Please note that these results are approximate and intended to provide a general idea for beginners.", label='Notice:')
|
316 |
+
training_info_output = gr.Markdown(label="Training Information:")
|
317 |
+
get_info_button = gr.Button("Get Training Info")
|
318 |
+
get_info_button.click(
|
319 |
+
fn=on_button_click,
|
320 |
+
inputs=[audio_input],
|
321 |
+
outputs=[training_info_output]
|
322 |
+
)
|
323 |
|
324 |
with gr.Tab("Credits"):
|
325 |
gr.Markdown(
|
|
|
334 |
"""
|
335 |
)
|
336 |
|
337 |
+
demo.queue(api_open=False).launch(show_api=False)
|