Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,29 +15,28 @@ img_mode = "RGBA"
|
|
15 |
|
16 |
@spaces.GPU
|
17 |
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
18 |
-
"""Real-ESRGAN function to restore (and upscale) images.
|
19 |
-
"""
|
20 |
if not img:
|
21 |
return
|
22 |
|
23 |
# Define model parameters
|
24 |
-
if model_name == 'RealESRGAN_x4plus':
|
25 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
26 |
netscale = 4
|
27 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
|
28 |
-
elif model_name == 'RealESRNet_x4plus':
|
29 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
30 |
netscale = 4
|
31 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
|
32 |
-
elif model_name == 'RealESRGAN_x4plus_anime_6B':
|
33 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
34 |
netscale = 4
|
35 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
|
36 |
-
elif model_name == 'RealESRGAN_x2plus':
|
37 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
38 |
netscale = 2
|
39 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
|
40 |
-
elif model_name == 'realesr-general-x4v3':
|
41 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
42 |
netscale = 4
|
43 |
file_url = [
|
@@ -45,23 +44,19 @@ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
|
45 |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
|
46 |
]
|
47 |
|
48 |
-
# Determine model paths
|
49 |
model_path = os.path.join('weights', model_name + '.pth')
|
50 |
if not os.path.isfile(model_path):
|
51 |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
52 |
for url in file_url:
|
53 |
-
# model_path will be updated
|
54 |
model_path = load_file_from_url(
|
55 |
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
56 |
|
57 |
-
# Use dni to control the denoise strength
|
58 |
dni_weight = None
|
59 |
if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
|
60 |
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
|
61 |
model_path = [model_path, wdn_model_path]
|
62 |
dni_weight = [denoise_strength, 1 - denoise_strength]
|
63 |
|
64 |
-
# Restorer Class
|
65 |
upsampler = RealESRGANer(
|
66 |
scale=netscale,
|
67 |
model_path=model_path,
|
@@ -74,7 +69,6 @@ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
|
74 |
gpu_id=None
|
75 |
)
|
76 |
|
77 |
-
# Use GFPGAN for face enhancement
|
78 |
if face_enhance:
|
79 |
from gfpgan import GFPGANer
|
80 |
face_enhancer = GFPGANer(
|
@@ -84,11 +78,9 @@ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
|
84 |
channel_multiplier=2,
|
85 |
bg_upsampler=upsampler)
|
86 |
|
87 |
-
# Convert the input PIL image to cv2 image, so that it can be processed by realesrgan
|
88 |
cv_img = numpy.array(img)
|
89 |
img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
|
90 |
|
91 |
-
# Apply restoration
|
92 |
try:
|
93 |
if face_enhance:
|
94 |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
@@ -98,49 +90,29 @@ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
|
98 |
print('Error', error)
|
99 |
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
100 |
else:
|
101 |
-
|
102 |
-
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
103 |
-
extension = 'png'
|
104 |
-
else:
|
105 |
-
extension = 'jpg'
|
106 |
|
107 |
out_filename = f"output_{rnd_string(8)}.{extension}"
|
108 |
cv2.imwrite(out_filename, output)
|
109 |
global last_file
|
110 |
last_file = out_filename
|
111 |
-
return out_filename
|
112 |
|
|
|
|
|
113 |
|
114 |
def rnd_string(x):
|
115 |
-
"""Returns a string of 'x' random characters
|
116 |
-
"""
|
117 |
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
|
118 |
-
|
119 |
-
return result
|
120 |
-
|
121 |
|
122 |
def reset():
|
123 |
-
"""Resets the Image components of the Gradio interface and deletes
|
124 |
-
the last processed image
|
125 |
-
"""
|
126 |
global last_file
|
127 |
if last_file:
|
128 |
print(f"Deleting {last_file} ...")
|
129 |
os.remove(last_file)
|
130 |
last_file = None
|
131 |
-
return gr.update(value=None), gr.update(value=None)
|
132 |
-
|
133 |
|
134 |
def has_transparency(img):
|
135 |
-
"""This function works by first checking to see if a "transparency" property is defined
|
136 |
-
in the image's info -- if so, we return "True". Then, if the image is using indexed colors
|
137 |
-
(such as in GIFs), it gets the index of the transparent color in the palette
|
138 |
-
(img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas
|
139 |
-
(img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in
|
140 |
-
it, but it double-checks by getting the minimum and maximum values of every color channel
|
141 |
-
(img.getextrema()), and checks if the alpha channel's smallest value falls below 255.
|
142 |
-
https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
|
143 |
-
"""
|
144 |
if img.info.get("transparency", None) is not None:
|
145 |
return True
|
146 |
if img.mode == "P":
|
@@ -154,69 +126,70 @@ def has_transparency(img):
|
|
154 |
return True
|
155 |
return False
|
156 |
|
157 |
-
|
158 |
def image_properties(img):
|
159 |
"""Returns the dimensions (width and height) and color mode of the input image and
|
160 |
also sets the global img_mode variable to be used by the realesrgan function
|
161 |
"""
|
162 |
global img_mode
|
163 |
-
if img:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
if has_transparency(img):
|
165 |
img_mode = "RGBA"
|
166 |
else:
|
167 |
img_mode = "RGB"
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
|
172 |
def main():
|
173 |
-
# Gradio Interface
|
174 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria Upscaler π") as app:
|
175 |
|
176 |
gr.Markdown(
|
177 |
"""# <div align="center"> Ilaria Upscaler π </div>
|
178 |
"""
|
179 |
)
|
180 |
-
|
181 |
with gr.Accordion("Upscaling option"):
|
182 |
with gr.Row():
|
183 |
-
model_name = gr.Dropdown(label="
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
minimum=1, maximum=6, step=1, value=4, show_label=True)
|
191 |
-
face_enhance = gr.Checkbox(label="Face Enhancement (GFPGAN)",
|
192 |
-
)
|
193 |
-
|
194 |
with gr.Row():
|
195 |
with gr.Group():
|
196 |
-
input_image = gr.Image(label="Input Image", type="pil"
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
199 |
with gr.Row():
|
200 |
-
reset_btn = gr.Button("
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])
|
209 |
-
# reset_btn.click(None, inputs=[], outputs=[input_image], _js="() => (null)\n")
|
210 |
-
# Undocumented method to clear a component's value using Javascript
|
211 |
|
212 |
gr.Markdown(
|
213 |
"""Made with love by Ilaria π | Support me on [Ko-Fi](https://ko-fi.com/ilariaowo) | Using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
|
214 |
-
|
215 |
"""
|
216 |
)
|
217 |
|
218 |
app.launch()
|
219 |
|
220 |
-
|
221 |
if __name__ == "__main__":
|
222 |
-
main()
|
|
|
15 |
|
16 |
@spaces.GPU
|
17 |
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
|
18 |
+
"""Real-ESRGAN function to restore (and upscale) images."""
|
|
|
19 |
if not img:
|
20 |
return
|
21 |
|
22 |
# Define model parameters
|
23 |
+
if model_name == 'RealESRGAN_x4plus':
|
24 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
25 |
netscale = 4
|
26 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
|
27 |
+
elif model_name == 'RealESRNet_x4plus':
|
28 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
29 |
netscale = 4
|
30 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
|
31 |
+
elif model_name == 'RealESRGAN_x4plus_anime_6B':
|
32 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
33 |
netscale = 4
|
34 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
|
35 |
+
elif model_name == 'RealESRGAN_x2plus':
|
36 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
37 |
netscale = 2
|
38 |
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
|
39 |
+
elif model_name == 'realesr-general-x4v3':
|
40 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
41 |
netscale = 4
|
42 |
file_url = [
|
|
|
44 |
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
|
45 |
]
|
46 |
|
|
|
47 |
model_path = os.path.join('weights', model_name + '.pth')
|
48 |
if not os.path.isfile(model_path):
|
49 |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
50 |
for url in file_url:
|
|
|
51 |
model_path = load_file_from_url(
|
52 |
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
53 |
|
|
|
54 |
dni_weight = None
|
55 |
if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
|
56 |
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
|
57 |
model_path = [model_path, wdn_model_path]
|
58 |
dni_weight = [denoise_strength, 1 - denoise_strength]
|
59 |
|
|
|
60 |
upsampler = RealESRGANer(
|
61 |
scale=netscale,
|
62 |
model_path=model_path,
|
|
|
69 |
gpu_id=None
|
70 |
)
|
71 |
|
|
|
72 |
if face_enhance:
|
73 |
from gfpgan import GFPGANer
|
74 |
face_enhancer = GFPGANer(
|
|
|
78 |
channel_multiplier=2,
|
79 |
bg_upsampler=upsampler)
|
80 |
|
|
|
81 |
cv_img = numpy.array(img)
|
82 |
img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
|
83 |
|
|
|
84 |
try:
|
85 |
if face_enhance:
|
86 |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
|
|
90 |
print('Error', error)
|
91 |
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
92 |
else:
|
93 |
+
extension = 'png' if img_mode == 'RGBA' else 'jpg'
|
|
|
|
|
|
|
|
|
94 |
|
95 |
out_filename = f"output_{rnd_string(8)}.{extension}"
|
96 |
cv2.imwrite(out_filename, output)
|
97 |
global last_file
|
98 |
last_file = out_filename
|
|
|
99 |
|
100 |
+
output_img = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA) if img_mode == "RGBA" else output
|
101 |
+
return out_filename, image_properties(output_img)
|
102 |
|
103 |
def rnd_string(x):
|
|
|
|
|
104 |
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
|
105 |
+
return "".join((random.choice(characters)) for i in range(x))
|
|
|
|
|
106 |
|
107 |
def reset():
|
|
|
|
|
|
|
108 |
global last_file
|
109 |
if last_file:
|
110 |
print(f"Deleting {last_file} ...")
|
111 |
os.remove(last_file)
|
112 |
last_file = None
|
113 |
+
return gr.update(value=None), gr.update(value=None), gr.update(value=None)
|
|
|
114 |
|
115 |
def has_transparency(img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
if img.info.get("transparency", None) is not None:
|
117 |
return True
|
118 |
if img.mode == "P":
|
|
|
126 |
return True
|
127 |
return False
|
128 |
|
|
|
129 |
def image_properties(img):
|
130 |
"""Returns the dimensions (width and height) and color mode of the input image and
|
131 |
also sets the global img_mode variable to be used by the realesrgan function
|
132 |
"""
|
133 |
global img_mode
|
134 |
+
if img is None: # Explicitly check for None
|
135 |
+
return "No image data available."
|
136 |
+
|
137 |
+
if isinstance(img, numpy.ndarray): # Handle NumPy array case
|
138 |
+
height, width = img.shape[:2]
|
139 |
+
channels = img.shape[2] if len(img.shape) > 2 else 1
|
140 |
+
img_mode = "RGBA" if channels == 4 else "RGB" if channels == 3 else "Grayscale"
|
141 |
+
return f"Resolution: Width: {width}, Height: {height} | Color Mode: {img_mode}"
|
142 |
+
|
143 |
+
if hasattr(img, "info") and hasattr(img, "mode") and hasattr(img, "size"): # Handle PIL images
|
144 |
if has_transparency(img):
|
145 |
img_mode = "RGBA"
|
146 |
else:
|
147 |
img_mode = "RGB"
|
148 |
+
return f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
|
149 |
+
|
150 |
+
return "Unsupported image format."
|
151 |
|
152 |
def main():
|
|
|
153 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria Upscaler π") as app:
|
154 |
|
155 |
gr.Markdown(
|
156 |
"""# <div align="center"> Ilaria Upscaler π </div>
|
157 |
"""
|
158 |
)
|
|
|
159 |
with gr.Accordion("Upscaling option"):
|
160 |
with gr.Row():
|
161 |
+
model_name = gr.Dropdown(label="Model",
|
162 |
+
choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B", "RealESRGAN_x2plus", "realesr-general-x4v3"],
|
163 |
+
value="RealESRGAN_x4plus")
|
164 |
+
denoise_strength = gr.Slider(label="Denoise Strength", minimum=0, maximum=1, step=0.1, value=0.5)
|
165 |
+
outscale = gr.Slider(label="Resolution Upscale", minimum=1, maximum=6, step=1, value=4)
|
166 |
+
face_enhance = gr.Checkbox(label="Face Enhancement")
|
167 |
+
|
|
|
|
|
|
|
|
|
168 |
with gr.Row():
|
169 |
with gr.Group():
|
170 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
171 |
+
input_properties = gr.Textbox(label="Input Image Properties", interactive=False)
|
172 |
+
|
173 |
+
with gr.Group():
|
174 |
+
output_image = gr.Image(label="Output Image")
|
175 |
+
output_properties = gr.Textbox(label="Output Image Properties", interactive=False)
|
176 |
+
|
177 |
with gr.Row():
|
178 |
+
reset_btn = gr.Button("Reset")
|
179 |
+
upscale_btn = gr.Button("Upscale")
|
180 |
+
|
181 |
+
input_image.change(fn=image_properties, inputs=input_image, outputs=input_properties)
|
182 |
+
upscale_btn.click(fn=realesrgan,
|
183 |
+
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
|
184 |
+
outputs=[output_image, output_properties])
|
185 |
+
reset_btn.click(fn=reset, inputs=[], outputs=[input_image, output_image, input_properties])
|
|
|
|
|
|
|
186 |
|
187 |
gr.Markdown(
|
188 |
"""Made with love by Ilaria π | Support me on [Ko-Fi](https://ko-fi.com/ilariaowo) | Using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
|
|
|
189 |
"""
|
190 |
)
|
191 |
|
192 |
app.launch()
|
193 |
|
|
|
194 |
if __name__ == "__main__":
|
195 |
+
main()
|