import gradio as gr from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig from PIL import Image import requests # Load the processor processor = AutoProcessor.from_pretrained( 'allenai/Molmo-7B-D-0924', trust_remote_code=True, torch_dtype='auto', device_map='auto' ) # Load the model model = AutoModelForCausalLM.from_pretrained( 'allenai/Molmo-7B-D-0924', trust_remote_code=True, torch_dtype='auto', device_map='auto' ) def describe_image(image): # Process the image and text inputs = processor.process( images=[image], text='''an image of a human sitting properly , with a laptop/pc clearly visible and the student’s face at least 40%-50% visible. The student should be looking at the laptop screen with both hands on the keyboard. There should be no other accessories other than laptop/pc, and no other second person should be present ." // analyse image on this conditions // if all condition satisfied answer YES else NO// Answer only in YES or NO''' ) # Move inputs to the correct device and make a batch of size 1 inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} # Generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated output = model.generate_from_batch( inputs, GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer ) # Only get generated tokens; decode them to text generated_tokens = output[0, inputs['input_ids'].size(1):] generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) return generated_text # Create the Gradio interface iface = gr.Interface( fn=describe_image, inputs=gr.Image(type="pil", label="Upload an Image"), outputs=gr.Textbox(label="Description"), title="OPPE", description="OPPE VERRFICATION." ) # Launch the interface iface.launch()