File size: 9,385 Bytes
90f3f7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44e96f1
90f3f7a
 
79522ef
90f3f7a
79522ef
8321b44
8fda66b
79522ef
 
90f3f7a
79522ef
90f3f7a
79522ef
90f3f7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8321b44
 
 
90f3f7a
8321b44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import collections
import heapq
import json
import os
import logging

import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from open_clip import create_model, get_tokenizer
from torchvision import transforms

from templates import openai_imagenet_template

log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
logging.basicConfig(level=logging.INFO, format=log_format)
logger = logging.getLogger()


model_str = "hf-hub:imageomics/bioclip"
tokenizer_str = "ViT-B-16"

txt_emb_npy = r"txt_emb_species.npy"
txt_names_json = r"txt_emb_species.json"


min_prob = 1e-9
k = 5

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

preprocess_img = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Resize((224, 224), antialias=True),
        transforms.Normalize(
            mean=(0.48145466, 0.4578275, 0.40821073),
            std=(0.26862954, 0.26130258, 0.27577711),
        ),
    ]
)

ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")

open_domain_examples = [

    ['example1_Pararge_aegeria.jpg', "Species"]

]
zero_shot_examples = [
    ['example1_Pararge_aegeria.jpg', "Pararge aegeria \nPieris brassicae \nSatyrium w-album \nDanaus chrysippus"]
    ]


def indexed(lst, indices):
    return [lst[i] for i in indices]


@torch.no_grad()
def get_txt_features(classnames, templates):
    all_features = []
    for classname in classnames:
        txts = [template(classname) for template in templates]
        txts = tokenizer(txts).to(device)
        txt_features = model.encode_text(txts)
        txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
        txt_features /= txt_features.norm()
        all_features.append(txt_features)
    all_features = torch.stack(all_features, dim=1)
    return all_features


@torch.no_grad()
def zero_shot_classification(img, cls_str: str) -> dict[str, float]:
    classes = [cls.strip() for cls in cls_str.split("\n") if cls.strip()]
    txt_features = get_txt_features(classes, openai_imagenet_template)

    img = preprocess_img(img).to(device)
    img_features = model.encode_image(img.unsqueeze(0))
    img_features = F.normalize(img_features, dim=-1)

    logits = (model.logit_scale.exp() * img_features @ txt_features).squeeze()
    probs = F.softmax(logits, dim=0).to("cpu").tolist()
    return {cls: prob for cls, prob in zip(classes, probs)}


def format_name(taxon, common):
    taxon = " ".join(taxon)
    if not common:
        return taxon
    return f"{taxon} ({common})"


@torch.no_grad()
def open_domain_classification(img, rank: int) -> dict[str, float]:
    """
    Predicts from the entire tree of life.
    If targeting a higher rank than species, then this function predicts among all
    species, then sums up species-level probabilities for the given rank.
    """
    img = preprocess_img(img).to(device)
    img_features = model.encode_image(img.unsqueeze(0))
    img_features = F.normalize(img_features, dim=-1)

    logits = (model.logit_scale.exp() * img_features @ txt_emb).squeeze()
    probs = F.softmax(logits, dim=0)

    # If predicting species, no need to sum probabilities.
    if rank + 1 == len(ranks):
        topk = probs.topk(k)
        return {
            format_name(*txt_names[i]): prob for i, prob in zip(topk.indices, topk.values)
        }

    # Sum up by the rank
    output = collections.defaultdict(float)
    for i in torch.nonzero(probs > min_prob).squeeze():
        output[" ".join(txt_names[i][0][: rank + 1])] += probs[i]

    topk_names = heapq.nlargest(k, output, key=output.get)

    return {name: output[name] for name in topk_names}


def change_output(choice):
    return gr.Label(num_top_classes=k, label=ranks[choice], show_label=True, value=None)



js = """
function createGradioAnimation() {
    var container = document.createElement('div');
    container.id = 'gradio-animation';
    container.style.fontSize = '2em';
    container.style.fontWeight = 'bold';
    container.style.textAlign = 'center';
    container.style.marginBottom = '20px';

    var text = 'Global Species Identifier: Powered by Artificial Intelligence';
    for (var i = 0; i < text.length; i++) {
        (function(i){
            setTimeout(function(){
                var letter = document.createElement('span');
                letter.style.opacity = '0';
                letter.style.transition = 'opacity 0.5s';
                letter.innerText = text[i];

                container.appendChild(letter);

                setTimeout(function() {
                    letter.style.opacity = '1';
                }, 50);
            }, i * 50);
        })(i);
    }

    var gradioContainer = document.querySelector('.gradio-container');
    gradioContainer.insertBefore(container, gradioContainer.firstChild);

    return 'Animation created';
}
"""

if __name__ == "__main__":
    logger.info("Starting.")
    model = create_model(model_str, output_dict=True, require_pretrained=True)
    model = model.to(device)
    logger.info("Created model.")

   # model = torch.compile(model)
    logger.info("Compiled model.")

    tokenizer = get_tokenizer(tokenizer_str)

    txt_emb = torch.from_numpy(np.load(txt_emb_npy, mmap_mode="r")).to(device)
    with open(txt_names_json) as fd:
        txt_names = json.load(fd)

    done = txt_emb.any(axis=0).sum().item()
    total = txt_emb.shape[1]
    status_msg = ""
    if done != total:
        status_msg = f"{done}/{total} ({done / total * 100:.1f}%) indexed"

    with gr.Blocks(title='Global Wildlife Species Identifier: Powered by Artificial Intelligence', css="footer {visibility: hidden}", js=js) as app:

        gr.Markdown(
        """Upload an image of any plant, animal, or other organism, and our Artificial Intelligence-powered tool will identify the species. Our database covers species from around the world, aiming to support biodiversity awareness and conservation efforts.

        Features include:
        - **Instant identification** of plants, animals, and other organisms world-wide with high accuracy.
        - **Detailed information** on species taxonomy.
        - An **interactive, user-friendly interface** designed for both experts and enthusiasts.
        - **Continuous learning and improvement** of AI models to expand the app's knowledge base and accuracy.

        Join us in exploring the diversity of life on Earth, powered by the intelligence of technology. Start your journey of discovery today!

        """)
        img_input = gr.Image()

        with gr.Tab("Open-Ended"):
            with gr.Row():
                with gr.Column():
                    rank_dropdown = gr.Dropdown(
                        label="Taxonomic Rank",
                        info="Which taxonomic rank to predict. Fine-grained ranks (genus, species) are more challenging.",
                        choices=ranks,
                        value="Species",
                        type="index",
                    )
                    open_domain_btn = gr.Button("Submit", variant="primary")
                with gr.Column():
                    open_domain_output = gr.Label(
                        num_top_classes=k,
                        label="Prediction",
                        show_label=True,
                        value=None,
                    )

            with gr.Row():
                gr.Examples(
                    examples=open_domain_examples,
                    inputs=[img_input, rank_dropdown],
                    cache_examples=True,
                    fn=open_domain_classification,
                    outputs=[open_domain_output],
                )


        with gr.Tab("Zero-Shot"):
            with gr.Row():
                with gr.Column():
                    classes_txt = gr.Textbox(
                        placeholder= "Pararge aegeria \nPieris brassicae \nSatyrium w-album \nDanaus chrysippus\n...",
                        lines=3,
                        label="Classes",
                        show_label=True,
                        info="Use taxonomic names where possible; include common names if possible.",
                    )
                    zero_shot_btn = gr.Button("Submit", variant="primary")

                with gr.Column():
                    zero_shot_output = gr.Label(
                        num_top_classes=k, label="Prediction", show_label=True
                    )

            with gr.Row():
                gr.Examples(
                    examples=zero_shot_examples,
                    inputs=[img_input, classes_txt],
                    cache_examples=True,
                    fn=zero_shot_classification,
                    outputs=[zero_shot_output],
                )


        rank_dropdown.change(
            fn=change_output, inputs=rank_dropdown, outputs=[open_domain_output]
        )

        open_domain_btn.click(
            fn=open_domain_classification,
            inputs=[img_input, rank_dropdown],
            outputs=[open_domain_output],
        )

        zero_shot_btn.click(
            fn=zero_shot_classification,
            inputs=[img_input, classes_txt],
            outputs=zero_shot_output,
        )

        gr.Markdown(
        """Built by **Theivaprakasham Hari** (https://www.linkedin.com/in/theivaprakasham/)""")

    app.queue(max_size=20)
    app.launch(show_api=False)