Theivaprakasham commited on
Commit
be49b0b
1 Parent(s): 4a5e26f

adding app

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +104 -0
  2. .pre-commit-config.yaml +7 -0
  3. LICENSE +674 -0
  4. README.md +1 -1
  5. README_yolov6.md +100 -0
  6. app.py +34 -0
  7. assets/picture.png +0 -0
  8. configs/yolov6_tiny.py +53 -0
  9. configs/yolov6_tiny_finetune.py +53 -0
  10. configs/yolov6n.py +53 -0
  11. configs/yolov6n_finetune.py +53 -0
  12. configs/yolov6s.py +53 -0
  13. configs/yolov6s_finetune.py +53 -0
  14. data/coco.yaml +18 -0
  15. data/images/image1.jpg +0 -0
  16. data/images/image2.jpg +0 -0
  17. data/images/image3.jpg +0 -0
  18. deploy/ONNX/README.md +17 -0
  19. deploy/ONNX/export_onnx.py +80 -0
  20. deploy/OpenVINO/README.md +18 -0
  21. deploy/OpenVINO/export_openvino.py +92 -0
  22. docs/About_naming_yolov6.md +12 -0
  23. docs/Test_speed.md +41 -0
  24. docs/Train_custom_data.md +129 -0
  25. packages.txt +5 -0
  26. requirements.txt +15 -0
  27. tools/eval.py +86 -0
  28. tools/infer.py +108 -0
  29. tools/quantization/mnn/README.md +1 -0
  30. tools/quantization/tensorrt/post_training/Calibrator.py +210 -0
  31. tools/quantization/tensorrt/post_training/LICENSE +192 -0
  32. tools/quantization/tensorrt/post_training/README.md +83 -0
  33. tools/quantization/tensorrt/post_training/onnx_to_tensorrt.py +220 -0
  34. tools/quantization/tensorrt/post_training/quant.sh +23 -0
  35. tools/quantization/tensorrt/requirements.txt +7 -0
  36. tools/quantization/tensorrt/training_aware/QAT_quantizer.py +39 -0
  37. tools/train.py +87 -0
  38. yolov6/core/engine.py +262 -0
  39. yolov6/core/evaler.py +258 -0
  40. yolov6/core/inferer.py +196 -0
  41. yolov6/data/data_augment.py +193 -0
  42. yolov6/data/data_load.py +77 -0
  43. yolov6/data/datasets.py +533 -0
  44. yolov6/layers/common.py +269 -0
  45. yolov6/models/efficientrep.py +102 -0
  46. yolov6/models/effidehead.py +211 -0
  47. yolov6/models/loss.py +411 -0
  48. yolov6/models/reppan.py +108 -0
  49. yolov6/models/yolo.py +83 -0
  50. yolov6/solver/build.py +41 -0
.gitignore ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ **/*.pyc
6
+
7
+ # C extensions
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ runs/
13
+ weights/
14
+ develop-eggs/
15
+ dist/
16
+ downloads/
17
+ eggs/
18
+ .eggs/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+ MANIFEST
27
+
28
+ # PyInstaller
29
+ # Usually these files are written by a python script from a template
30
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
31
+ *.manifest
32
+ *.spec
33
+
34
+ # Installer logs
35
+ pip-log.txt
36
+ pip-delete-this-directory.txt
37
+
38
+ # Unit test / coverage reports
39
+ htmlcov/
40
+ .tox/
41
+ .coverage
42
+ .coverage.*
43
+ .cache
44
+ nosetests.xml
45
+ coverage.xml
46
+ *.cover
47
+ .hypothesis/
48
+ .pytest_cache/
49
+
50
+ # Translations
51
+ *.mo
52
+ *.pot
53
+
54
+ # Django stuff:
55
+ *.log
56
+ local_settings.py
57
+ db.sqlite3
58
+
59
+ # Flask stuff:
60
+ instance/
61
+ .webassets-cache
62
+
63
+ # Scrapy stuff:
64
+ .scrapy
65
+
66
+ # Sphinx documentation
67
+ docs/_build/
68
+
69
+ # PyBuilder
70
+ target/
71
+
72
+ # Jupyter Notebook
73
+ .ipynb_checkpoints
74
+
75
+ # pyenv
76
+ .python-version
77
+
78
+ # celery beat schedule file
79
+ celerybeat-schedule
80
+
81
+ # SageMath parsed files
82
+ *.sage.py
83
+
84
+ # Environments
85
+ .env
86
+ .venv
87
+ env/
88
+ venv/
89
+ ENV/
90
+ env.bak/
91
+ venv.bak/
92
+
93
+ # Spyder project settings
94
+ .spyderproject
95
+ .spyproject
96
+
97
+ # Rope project settings
98
+ .ropeproject
99
+
100
+ # custom
101
+ .DS_Store
102
+
103
+ # Pytorch
104
+ *.pth
.pre-commit-config.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v4.3.0
4
+ hooks:
5
+ - id: check-yaml
6
+ - id: end-of-file-fixer
7
+ - id: trailing-whitespace
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Yolov6
3
  emoji: 🔥
4
  colorFrom: indigo
5
  colorTo: pink
 
1
  ---
2
+ title: YOLOv6
3
  emoji: 🔥
4
  colorFrom: indigo
5
  colorTo: pink
README_yolov6.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MT-YOLOv6 [About Naming YOLOv6](./docs/About_naming_yolov6.md)
2
+
3
+ ## Introduction
4
+
5
+ YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance.
6
+
7
+ <img src="assets/picture.png" width="800">
8
+
9
+ YOLOv6-nano achieves 35.0 mAP on COCO val2017 dataset with 1242 FPS on T4 using TensorRT FP16 for bs32 inference, and YOLOv6-s achieves 43.1 mAP on COCO val2017 dataset with 520 FPS on T4 using TensorRT FP16 for bs32 inference.
10
+
11
+ YOLOv6 is composed of the following methods:
12
+
13
+ - Hardware-friendly Design for Backbone and Neck
14
+ - Efficient Decoupled Head with SIoU Loss
15
+
16
+
17
+ ## Coming soon
18
+
19
+ - [ ] YOLOv6 m/l/x model.
20
+ - [ ] Deployment for MNN/TNN/NCNN/CoreML...
21
+ - [ ] Quantization tools
22
+
23
+
24
+ ## Quick Start
25
+
26
+ ### Install
27
+
28
+ ```shell
29
+ git clone https://github.com/meituan/YOLOv6
30
+ cd YOLOv6
31
+ pip install -r requirements.txt
32
+ ```
33
+
34
+ ### Inference
35
+
36
+ First, download a pretrained model from the YOLOv6 [release](https://github.com/meituan/YOLOv6/releases/tag/0.1.0)
37
+
38
+ Second, run inference with `tools/infer.py`
39
+
40
+ ```shell
41
+ python tools/infer.py --weights yolov6s.pt --source img.jpg / imgdir
42
+ yolov6n.pt
43
+ ```
44
+
45
+ ### Training
46
+
47
+ Single GPU
48
+
49
+ ```shell
50
+ python tools/train.py --batch 32 --conf configs/yolov6s.py --data data/coco.yaml --device 0
51
+ configs/yolov6n.py
52
+ ```
53
+
54
+ Multi GPUs (DDP mode recommended)
55
+
56
+ ```shell
57
+ python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s.py --data data/coco.yaml --device 0,1,2,3,4,5,6,7
58
+ configs/yolov6n.py
59
+ ```
60
+
61
+ - conf: select config file to specify network/optimizer/hyperparameters
62
+ - data: prepare [COCO](http://cocodataset.org) dataset and specify dataset paths in data.yaml
63
+
64
+
65
+ ### Evaluation
66
+
67
+ Reproduce mAP on COCO val2017 dataset
68
+
69
+ ```shell
70
+ python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6s.pt --task val
71
+ yolov6n.pt
72
+ ```
73
+
74
+
75
+ ### Deployment
76
+
77
+ * [ONNX](./deploy/ONNX)
78
+ * [OpenVINO](./deploy/OpenVINO)
79
+
80
+ ### Tutorials
81
+
82
+ * [Train custom data](./docs/Train_custom_data.md)
83
+ * [Test speed](./docs/Test_speed.md)
84
+
85
+
86
+
87
+ ## Benchmark
88
+
89
+
90
+ | Model | Size | mAP<sup>val<br/>0.5:0.95 | Speed<sup>V100<br/>fp16 b32 <br/>(ms) | Speed<sup>V100<br/>fp32 b32 <br/>(ms) | Speed<sup>T4<br/>trt fp16 b1 <br/>(fps) | Speed<sup>T4<br/>trt fp16 b32 <br/>(fps) | Params<br/><sup> (M) | Flops<br/><sup> (G) |
91
+ | :-------------- | ----------- | :----------------------- | :------------------------------------ | :------------------------------------ | ---------------------------------------- | ----------------------------------------- | --------------- | -------------- |
92
+ | [**YOLOv6-n**](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6n.pt) | 416<br/>640 | 30.8<br/>35.0 | 0.3<br/>0.5 | 0.4<br/>0.7 | 1100<br/>788 | 2716<br/>1242 | 4.3<br/>4.3 | 4.7<br/>11.1 |
93
+ | [**YOLOv6-tiny**](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6t.pt) | 640 | 41.3 | 0.9 | 1.5 | 425 | 602 | 15.0 | 36.7 |
94
+ | [**YOLOv6-s**](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6s.pt) | 640 | 43.1 | 1.0 | 1.7 | 373 | 520 | 17.2 | 44.2 |
95
+
96
+
97
+ - Comparisons of the mAP and speed of different object detectors are tested on [COCO val2017](https://cocodataset.org/#download) dataset.
98
+ - Refer to [Test speed](./docs/Test_speed.md) tutorial to reproduce the speed results of YOLOv6.
99
+ - Params and Flops of YOLOv6 are estimated on deployed model.
100
+ - Speed results of other methods are tested in our environment using official codebase and model if not found from the corresponding official release.
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ import subprocess
5
+ import os
6
+ import PIL
7
+ from pathlib import Path
8
+ import uuid
9
+
10
+ # Images
11
+ torch.hub.download_url_to_file('https://miro.medium.com/max/1400/1*EYFejGUjvjPcc4PZTwoufw.jpeg', '1*EYFejGUjvjPcc4PZTwoufw.jpeg')
12
+ torch.hub.download_url_to_file('https://production-media.paperswithcode.com/tasks/ezgif-frame-001_OZzxdny.jpg', 'ezgif-frame-001_OZzxdny.jpg')
13
+ torch.hub.download_url_to_file('https://favtutor.com/resources/images/uploads/Social_Distancing_Covid_19__1.jpg', 'Social_Distancing_Covid_19__1.jpg')
14
+ torch.hub.download_url_to_file('https://nkcf.org/wp-content/uploads/2017/11/people.jpg', 'people.jpg')
15
+
16
+ def yolo(im):
17
+ file_name = str(uuid.uuid4())
18
+ im.save(f'{file_name}.jpg')
19
+ os.system(f"python tools/infer.py --weights yolov6s.pt --source {str(file_name)}.jpg --project ''")
20
+ img = PIL.Image.open(f"exp/{file_name}.jpg")
21
+ os.remove(f"exp/{file_name}.jpg")
22
+ os.remove(f'{file_name}.jpg')
23
+ return img
24
+
25
+ inputs = gr.inputs.Image(type='pil', label="Original Image")
26
+ outputs = gr.outputs.Image(type="pil", label="Output Image")
27
+
28
+ title = "YOLOv6 - Demo"
29
+ description = "YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance. Here is a quick Gradio Demo for testing YOLOv6s model. More details from <a href='https://github.com/meituan/YOLOv6'>https://github.com/meituan/YOLOv6</a> "
30
+ article = "<p>YOLOv6-nano achieves 35.0 mAP on COCO val2017 dataset with 1242 FPS on T4 using TensorRT FP16 for bs32 inference, and YOLOv6-s achieves 43.1 mAP on COCO val2017 dataset with 520 FPS on T4 using TensorRT FP16 for bs32 inference. More information at <a href='https://github.com/meituan/YOLOv6'>https://github.com/meituan/YOLOv6</a></p>"
31
+
32
+ examples = [['1*EYFejGUjvjPcc4PZTwoufw.jpeg'], ['ezgif-frame-001_OZzxdny.jpg'], ['Social_Distancing_Covid_19__1.jpg'], ['people.jpg']]
33
+
34
+ gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled = True, enable_queue=True).launch(inline=False, share=False, debug=False)
assets/picture.png ADDED
configs/yolov6_tiny.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv6t model
2
+ model = dict(
3
+ type='YOLOv6t',
4
+ pretrained=None,
5
+ depth_multiple=0.25,
6
+ width_multiple=0.50,
7
+ backbone=dict(
8
+ type='EfficientRep',
9
+ num_repeats=[1, 6, 12, 18, 6],
10
+ out_channels=[64, 128, 256, 512, 1024],
11
+ ),
12
+ neck=dict(
13
+ type='RepPAN',
14
+ num_repeats=[12, 12, 12, 12],
15
+ out_channels=[256, 128, 128, 256, 256, 512],
16
+ ),
17
+ head=dict(
18
+ type='EffiDeHead',
19
+ in_channels=[128, 256, 512],
20
+ num_layers=3,
21
+ begin_indices=24,
22
+ anchors=1,
23
+ out_indices=[17, 20, 23],
24
+ strides=[8, 16, 32],
25
+ iou_type='ciou'
26
+ )
27
+ )
28
+
29
+ solver = dict(
30
+ optim='SGD',
31
+ lr_scheduler='Cosine',
32
+ lr0=0.01,
33
+ lrf=0.01,
34
+ momentum=0.937,
35
+ weight_decay=0.0005,
36
+ warmup_epochs=3.0,
37
+ warmup_momentum=0.8,
38
+ warmup_bias_lr=0.1
39
+ )
40
+
41
+ data_aug = dict(
42
+ hsv_h=0.015,
43
+ hsv_s=0.7,
44
+ hsv_v=0.4,
45
+ degrees=0.0,
46
+ translate=0.1,
47
+ scale=0.5,
48
+ shear=0.0,
49
+ flipud=0.0,
50
+ fliplr=0.5,
51
+ mosaic=1.0,
52
+ mixup=0.0,
53
+ )
configs/yolov6_tiny_finetune.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv6t model
2
+ model = dict(
3
+ type='YOLOv6t',
4
+ pretrained='./weights/yolov6t.pt',
5
+ depth_multiple=0.25,
6
+ width_multiple=0.50,
7
+ backbone=dict(
8
+ type='EfficientRep',
9
+ num_repeats=[1, 6, 12, 18, 6],
10
+ out_channels=[64, 128, 256, 512, 1024],
11
+ ),
12
+ neck=dict(
13
+ type='RepPAN',
14
+ num_repeats=[12, 12, 12, 12],
15
+ out_channels=[256, 128, 128, 256, 256, 512],
16
+ ),
17
+ head=dict(
18
+ type='EffiDeHead',
19
+ in_channels=[128, 256, 512],
20
+ num_layers=3,
21
+ begin_indices=24,
22
+ anchors=1,
23
+ out_indices=[17, 20, 23],
24
+ strides=[8, 16, 32],
25
+ iou_type='ciou'
26
+ )
27
+ )
28
+
29
+ solver = dict(
30
+ optim='SGD',
31
+ lr_scheduler='Cosine',
32
+ lr0=0.0032,
33
+ lrf=0.12,
34
+ momentum=0.843,
35
+ weight_decay=0.00036,
36
+ warmup_epochs=2.0,
37
+ warmup_momentum=0.5,
38
+ warmup_bias_lr=0.05
39
+ )
40
+
41
+ data_aug = dict(
42
+ hsv_h=0.0138,
43
+ hsv_s=0.664,
44
+ hsv_v=0.464,
45
+ degrees=0.373,
46
+ translate=0.245,
47
+ scale=0.898,
48
+ shear=0.602,
49
+ flipud=0.00856,
50
+ fliplr=0.5,
51
+ mosaic=1.0,
52
+ mixup=0.243,
53
+ )
configs/yolov6n.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv6n model
2
+ model = dict(
3
+ type='YOLOv6n',
4
+ pretrained=None,
5
+ depth_multiple=0.33,
6
+ width_multiple=0.25,
7
+ backbone=dict(
8
+ type='EfficientRep',
9
+ num_repeats=[1, 6, 12, 18, 6],
10
+ out_channels=[64, 128, 256, 512, 1024],
11
+ ),
12
+ neck=dict(
13
+ type='RepPAN',
14
+ num_repeats=[12, 12, 12, 12],
15
+ out_channels=[256, 128, 128, 256, 256, 512],
16
+ ),
17
+ head=dict(
18
+ type='EffiDeHead',
19
+ in_channels=[128, 256, 512],
20
+ num_layers=3,
21
+ begin_indices=24,
22
+ anchors=1,
23
+ out_indices=[17, 20, 23],
24
+ strides=[8, 16, 32],
25
+ iou_type='ciou'
26
+ )
27
+ )
28
+
29
+ solver = dict(
30
+ optim='SGD',
31
+ lr_scheduler='Cosine',
32
+ lr0=0.01,
33
+ lrf=0.01,
34
+ momentum=0.937,
35
+ weight_decay=0.0005,
36
+ warmup_epochs=3.0,
37
+ warmup_momentum=0.8,
38
+ warmup_bias_lr=0.1
39
+ )
40
+
41
+ data_aug = dict(
42
+ hsv_h=0.015,
43
+ hsv_s=0.7,
44
+ hsv_v=0.4,
45
+ degrees=0.0,
46
+ translate=0.1,
47
+ scale=0.5,
48
+ shear=0.0,
49
+ flipud=0.0,
50
+ fliplr=0.5,
51
+ mosaic=1.0,
52
+ mixup=0.0,
53
+ )
configs/yolov6n_finetune.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv6n model
2
+ model = dict(
3
+ type='YOLOv6n',
4
+ pretrained='./weights/yolov6n.pt',
5
+ depth_multiple=0.33,
6
+ width_multiple=0.25,
7
+ backbone=dict(
8
+ type='EfficientRep',
9
+ num_repeats=[1, 6, 12, 18, 6],
10
+ out_channels=[64, 128, 256, 512, 1024],
11
+ ),
12
+ neck=dict(
13
+ type='RepPAN',
14
+ num_repeats=[12, 12, 12, 12],
15
+ out_channels=[256, 128, 128, 256, 256, 512],
16
+ ),
17
+ head=dict(
18
+ type='EffiDeHead',
19
+ in_channels=[128, 256, 512],
20
+ num_layers=3,
21
+ begin_indices=24,
22
+ anchors=1,
23
+ out_indices=[17, 20, 23],
24
+ strides=[8, 16, 32],
25
+ iou_type='ciou'
26
+ )
27
+ )
28
+
29
+ solver = dict(
30
+ optim='SGD',
31
+ lr_scheduler='Cosine',
32
+ lr0=0.0032,
33
+ lrf=0.12,
34
+ momentum=0.843,
35
+ weight_decay=0.00036,
36
+ warmup_epochs=2.0,
37
+ warmup_momentum=0.5,
38
+ warmup_bias_lr=0.05
39
+ )
40
+
41
+ data_aug = dict(
42
+ hsv_h=0.0138,
43
+ hsv_s=0.664,
44
+ hsv_v=0.464,
45
+ degrees=0.373,
46
+ translate=0.245,
47
+ scale=0.898,
48
+ shear=0.602,
49
+ flipud=0.00856,
50
+ fliplr=0.5,
51
+ mosaic=1.0,
52
+ mixup=0.243
53
+ )
configs/yolov6s.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv6s model
2
+ model = dict(
3
+ type='YOLOv6s',
4
+ pretrained=None,
5
+ depth_multiple=0.33,
6
+ width_multiple=0.50,
7
+ backbone=dict(
8
+ type='EfficientRep',
9
+ num_repeats=[1, 6, 12, 18, 6],
10
+ out_channels=[64, 128, 256, 512, 1024],
11
+ ),
12
+ neck=dict(
13
+ type='RepPAN',
14
+ num_repeats=[12, 12, 12, 12],
15
+ out_channels=[256, 128, 128, 256, 256, 512],
16
+ ),
17
+ head=dict(
18
+ type='EffiDeHead',
19
+ in_channels=[128, 256, 512],
20
+ num_layers=3,
21
+ begin_indices=24,
22
+ anchors=1,
23
+ out_indices=[17, 20, 23],
24
+ strides=[8, 16, 32],
25
+ iou_type='siou'
26
+ )
27
+ )
28
+
29
+ solver = dict(
30
+ optim='SGD',
31
+ lr_scheduler='Cosine',
32
+ lr0=0.01,
33
+ lrf=0.01,
34
+ momentum=0.937,
35
+ weight_decay=0.0005,
36
+ warmup_epochs=3.0,
37
+ warmup_momentum=0.8,
38
+ warmup_bias_lr=0.1
39
+ )
40
+
41
+ data_aug = dict(
42
+ hsv_h=0.015,
43
+ hsv_s=0.7,
44
+ hsv_v=0.4,
45
+ degrees=0.0,
46
+ translate=0.1,
47
+ scale=0.5,
48
+ shear=0.0,
49
+ flipud=0.0,
50
+ fliplr=0.5,
51
+ mosaic=1.0,
52
+ mixup=0.0,
53
+ )
configs/yolov6s_finetune.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv6s model
2
+ model = dict(
3
+ type='YOLOv6s',
4
+ pretrained='./weights/yolov6s.pt',
5
+ depth_multiple=0.33,
6
+ width_multiple=0.50,
7
+ backbone=dict(
8
+ type='EfficientRep',
9
+ num_repeats=[1, 6, 12, 18, 6],
10
+ out_channels=[64, 128, 256, 512, 1024],
11
+ ),
12
+ neck=dict(
13
+ type='RepPAN',
14
+ num_repeats=[12, 12, 12, 12],
15
+ out_channels=[256, 128, 128, 256, 256, 512],
16
+ ),
17
+ head=dict(
18
+ type='EffiDeHead',
19
+ in_channels=[128, 256, 512],
20
+ num_layers=3,
21
+ begin_indices=24,
22
+ anchors=1,
23
+ out_indices=[17, 20, 23],
24
+ strides=[8, 16, 32],
25
+ iou_type='siou'
26
+ )
27
+ )
28
+
29
+ solver = dict(
30
+ optim='SGD',
31
+ lr_scheduler='Cosine',
32
+ lr0=0.0032,
33
+ lrf=0.12,
34
+ momentum=0.843,
35
+ weight_decay=0.00036,
36
+ warmup_epochs=2.0,
37
+ warmup_momentum=0.5,
38
+ warmup_bias_lr=0.05
39
+ )
40
+
41
+ data_aug = dict(
42
+ hsv_h=0.0138,
43
+ hsv_s=0.664,
44
+ hsv_v=0.464,
45
+ degrees=0.373,
46
+ translate=0.245,
47
+ scale=0.898,
48
+ shear=0.602,
49
+ flipud=0.00856,
50
+ fliplr=0.5,
51
+ mosaic=1.0,
52
+ mixup=0.243,
53
+ )
data/coco.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # COCO 2017 dataset http://cocodataset.org
2
+ train: ../coco/images/train2017 # 118287 images
3
+ val: ../coco/images/val2017 # 5000 images
4
+ test: ../coco/images/test2017
5
+ anno_path: ../coco/annotations/instances_val2017.json
6
+ # number of classes
7
+ nc: 80
8
+
9
+ # class names
10
+ names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
11
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
12
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
13
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
14
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
15
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
16
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
17
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
18
+ 'hair drier', 'toothbrush' ]
data/images/image1.jpg ADDED
data/images/image2.jpg ADDED
data/images/image3.jpg ADDED
deploy/ONNX/README.md ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Export ONNX Model
2
+
3
+ ### Check requirements
4
+ ```shell
5
+ pip install onnx>=1.10.0
6
+ ```
7
+
8
+ ### Export script
9
+ ```shell
10
+ python deploy/ONNX/export_onnx.py --weights yolov6s.pt --img 640 --batch 1
11
+
12
+ ```
13
+
14
+ ### Download
15
+ * [YOLOv6-nano](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6n.onnx)
16
+ * [YOLOv6-tiny](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6t.onnx)
17
+ * [YOLOv6-s](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6s.onnx)
deploy/ONNX/export_onnx.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ import argparse
4
+ import time
5
+ import sys
6
+ import os
7
+ import torch
8
+ import torch.nn as nn
9
+ import onnx
10
+
11
+ ROOT = os.getcwd()
12
+ if str(ROOT) not in sys.path:
13
+ sys.path.append(str(ROOT))
14
+
15
+ from yolov6.models.yolo import *
16
+ from yolov6.models.effidehead import Detect
17
+ from yolov6.layers.common import *
18
+ from yolov6.utils.events import LOGGER
19
+ from yolov6.utils.checkpoint import load_checkpoint
20
+
21
+
22
+ if __name__ == '__main__':
23
+ parser = argparse.ArgumentParser()
24
+ parser.add_argument('--weights', type=str, default='./yolov6s.pt', help='weights path')
25
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
26
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
27
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
28
+ parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
29
+ parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0, 1, 2, 3 or cpu')
30
+ args = parser.parse_args()
31
+ args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand
32
+ print(args)
33
+ t = time.time()
34
+
35
+ # Check device
36
+ cuda = args.device != 'cpu' and torch.cuda.is_available()
37
+ device = torch.device('cuda:0' if cuda else 'cpu')
38
+ assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'
39
+ # Load PyTorch model
40
+ model = load_checkpoint(args.weights, map_location=device, inplace=True, fuse=True) # load FP32 model
41
+ for layer in model.modules():
42
+ if isinstance(layer, RepVGGBlock):
43
+ layer.switch_to_deploy()
44
+
45
+ # Input
46
+ img = torch.zeros(args.batch_size, 3, *args.img_size).to(device) # image size(1,3,320,192) iDetection
47
+
48
+ # Update model
49
+ if args.half:
50
+ img, model = img.half(), model.half() # to FP16
51
+ model.eval()
52
+ for k, m in model.named_modules():
53
+ if isinstance(m, Conv): # assign export-friendly activations
54
+ if isinstance(m.act, nn.SiLU):
55
+ m.act = SiLU()
56
+ elif isinstance(m, Detect):
57
+ m.inplace = args.inplace
58
+
59
+ y = model(img) # dry run
60
+
61
+ # ONNX export
62
+ try:
63
+ LOGGER.info('\nStarting to export ONNX...')
64
+ export_file = args.weights.replace('.pt', '.onnx') # filename
65
+ torch.onnx.export(model, img, export_file, verbose=False, opset_version=12,
66
+ training=torch.onnx.TrainingMode.EVAL,
67
+ do_constant_folding=True,
68
+ input_names=['image_arrays'],
69
+ output_names=['outputs'],
70
+ )
71
+
72
+ # Checks
73
+ onnx_model = onnx.load(export_file) # load onnx model
74
+ onnx.checker.check_model(onnx_model) # check onnx model
75
+ LOGGER.info(f'ONNX export success, saved as {export_file}')
76
+ except Exception as e:
77
+ LOGGER.info(f'ONNX export failure: {e}')
78
+
79
+ # Finish
80
+ LOGGER.info('\nExport complete (%.2fs)' % (time.time() - t))
deploy/OpenVINO/README.md ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Export OpenVINO Model
2
+
3
+ ### Check requirements
4
+ ```shell
5
+ pip install --upgrade pip
6
+ pip install openvino-dev
7
+ ```
8
+
9
+ ### Export script
10
+ ```shell
11
+ python deploy/OpenVINO/export_openvino.py --weights yolov6s.pt --img 640 --batch 1
12
+
13
+ ```
14
+
15
+ ### Download
16
+ * [YOLOv6-nano](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6n_openvino.tar.gz)
17
+ * [YOLOv6-tiny](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6n_openvino.tar.gz)
18
+ * [YOLOv6-s](https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6n_openvino.tar.gz)
deploy/OpenVINO/export_openvino.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ import argparse
4
+ import time
5
+ import sys
6
+ import os
7
+ import torch
8
+ import torch.nn as nn
9
+ import onnx
10
+ import subprocess
11
+
12
+ ROOT = os.getcwd()
13
+ if str(ROOT) not in sys.path:
14
+ sys.path.append(str(ROOT))
15
+
16
+ from yolov6.models.yolo import *
17
+ from yolov6.models.effidehead import Detect
18
+ from yolov6.layers.common import *
19
+ from yolov6.utils.events import LOGGER
20
+ from yolov6.utils.checkpoint import load_checkpoint
21
+
22
+
23
+ if __name__ == '__main__':
24
+ parser = argparse.ArgumentParser()
25
+ parser.add_argument('--weights', type=str, default='./yolov6s.pt', help='weights path')
26
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
27
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
28
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
29
+ parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
30
+ parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
31
+ args = parser.parse_args()
32
+ args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand
33
+ print(args)
34
+ t = time.time()
35
+
36
+ # Check device
37
+ cuda = args.device != 'cpu' and torch.cuda.is_available()
38
+ device = torch.device('cuda:0' if cuda else 'cpu')
39
+ assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'
40
+ # Load PyTorch model
41
+ model = load_checkpoint(args.weights, map_location=device, inplace=True, fuse=True) # load FP32 model
42
+ for layer in model.modules():
43
+ if isinstance(layer, RepVGGBlock):
44
+ layer.switch_to_deploy()
45
+
46
+ # Input
47
+ img = torch.zeros(args.batch_size, 3, *args.img_size).to(device) # image size(1,3,320,192) iDetection
48
+
49
+ # Update model
50
+ if args.half:
51
+ img, model = img.half(), model.half() # to FP16
52
+ model.eval()
53
+ for k, m in model.named_modules():
54
+ if isinstance(m, Conv): # assign export-friendly activations
55
+ if isinstance(m.act, nn.SiLU):
56
+ m.act = SiLU()
57
+ elif isinstance(m, Detect):
58
+ m.inplace = args.inplace
59
+
60
+ y = model(img) # dry run
61
+
62
+ # ONNX export
63
+ try:
64
+ LOGGER.info('\nStarting to export ONNX...')
65
+ export_file = args.weights.replace('.pt', '.onnx') # filename
66
+ torch.onnx.export(model, img, export_file, verbose=False, opset_version=12,
67
+ training=torch.onnx.TrainingMode.EVAL,
68
+ do_constant_folding=True,
69
+ input_names=['image_arrays'],
70
+ output_names=['outputs'],
71
+ )
72
+
73
+ # Checks
74
+ onnx_model = onnx.load(export_file) # load onnx model
75
+ onnx.checker.check_model(onnx_model) # check onnx model
76
+ LOGGER.info(f'ONNX export success, saved as {export_file}')
77
+ except Exception as e:
78
+ LOGGER.info(f'ONNX export failure: {e}')
79
+
80
+ # OpenVINO export
81
+ try:
82
+ LOGGER.info('\nStarting to export OpenVINO...')
83
+ import_file = args.weights.replace('.pt', '.onnx')
84
+ export_dir = str(import_file).replace('.onnx', '_openvino')
85
+ cmd = f"mo --input_model {import_file} --output_dir {export_dir} --data_type {'FP16' if args.half else 'FP32'}"
86
+ subprocess.check_output(cmd.split())
87
+ LOGGER.info(f'OpenVINO export success, saved as {export_dir}')
88
+ except Exception as e:
89
+ LOGGER.info(f'OpenVINO export failure: {e}')
90
+
91
+ # Finish
92
+ LOGGER.info('\nExport complete (%.2fs)' % (time.time() - t))
docs/About_naming_yolov6.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # About the naming of YOLOv6
2
+
3
+ ### WHY named YOLOv6 ?
4
+ The full name is actually MT-YOLOv6, which is called YOLOv6 for brevity. Our work is majorly inspired by the original idea of the one-stage YOLO detection algorithm and the implementation has leveraged various techniques and tricks of former relevant work . Therefore, we named the project YOLOv6 to pay tribute to the work of YOLO series. Furthermore, we have indeed adopted some novel method and made solid engineering improvements to dedicate the algorithm to industrial applications.
5
+ As for the project, we'll continue to improve and maintain it, contributing more values for industrial applications.
6
+
7
+ P.S. We are contacting the authors of YOLO series about the naming of YOLOv6.
8
+
9
+ Thanks for your attention!
10
+
11
+
12
+
docs/Test_speed.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Test speed
2
+
3
+ This guidence explains how to reproduce speed results of YOLOv6. For fair comparision, the speed results do not contain the time cost of data pre-processing and NMS post-processing.
4
+
5
+ ## 0. Prepare model
6
+
7
+ Download the models you want to test from the latest release.
8
+
9
+ ## 1. Prepare testing environment
10
+
11
+ Refer to README, install packages corresponding to CUDA, CUDNN and TensorRT version.
12
+
13
+ Here, we use Torch1.8.0 inference on V100 and TensorRT 7.2 on T4.
14
+
15
+ ## 2. Reproduce speed
16
+
17
+ #### 2.1 Torch Inference on V100
18
+
19
+ To get inference speed without TensorRT on V100, you can run the following command:
20
+
21
+ ```shell
22
+ python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6n.pt --task speed [--half]
23
+ ```
24
+
25
+ - Speed results with batchsize = 1 are unstable in multiple runs, thus we do not provide the bs1 speed results.
26
+
27
+ #### 2.2 TensorRT Inference on T4
28
+
29
+ To get inference speed with TensorRT in FP16 mode on T4, you can follow the steps below:
30
+
31
+ First, export pytorch model as onnx format using the following command:
32
+
33
+ ```shell
34
+ python deploy/ONNX/export_onnx.py --weights yolov6n.pt --device 0 --batch [1 or 32]
35
+ ```
36
+
37
+ Second, generate an inference trt engine and test speed using `trtexec`:
38
+
39
+ ```
40
+ trtexec --onnx=yolov6n.onnx --workspace=1024 --avgRuns=1000 --inputIOFormats=fp16:chw --outputIOFormats=fp16:chw
41
+ ```
docs/Train_custom_data.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Train Custom Data
2
+
3
+ This guidence explains how to train your own custom data with YOLOv6 ( take fine-tuning YOLOv6-s model for example).
4
+
5
+ ## 0. Before you start
6
+
7
+ Clone this repo and follow README.md to install requirements in a Python3.8 environment.
8
+
9
+
10
+ ## 1. Prepare your own dataset
11
+
12
+ **Step 1** Prepare your own dataset with images. For labeling images, you can use tools like [Labelme](https://github.com/wkentaro/labelme).
13
+
14
+ **Step 2** Generate label files in YOLO format.
15
+
16
+ One image corresponds to one label file, and the label format example is presented as below.
17
+
18
+ ```json
19
+ # class_id center_x center_y bbox_width bbox_height
20
+ 0 0.300926 0.617063 0.601852 0.765873
21
+ 1 0.575 0.319531 0.4 0.551562
22
+ ```
23
+
24
+ - Each row represents one object.
25
+ - Class id starts from `0`.
26
+ - Boundingbox coordinates must be in normalized `xywh` format (from 0 - 1). If your boxes are in pixels, divide `center_x` and `bbox_width` by image width, and `center_y` and `bbox_height` by image height.
27
+
28
+ **Step 3** Organize directories.
29
+
30
+ Organize your train and val images and label files according to the example below.
31
+
32
+ ```shell
33
+ # image directory
34
+ path/to/data/images/train/im0.jpg
35
+ path/to/data/images/val/im1.jpg
36
+ path/to/data/images/test/im2.jpg
37
+
38
+ # label directory
39
+ path/to/data/labels/train/im0.txt
40
+ path/to/data/labels/val/im1.txt
41
+ path/to/data/labels/test/im2.txt
42
+ ```
43
+
44
+ **Step 4** Create `dataset.yaml` in `$YOLOv6_DIR/data`.
45
+
46
+ ```yaml
47
+ train: path/to/data/images/train # train images
48
+ val: path/to/data/images/val # val images
49
+ test: path/to/data/images/test # test images (optional)
50
+
51
+ # Classes
52
+ nc: 20 # number of classes
53
+ names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
54
+ 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
55
+
56
+ ```
57
+
58
+
59
+ ## 2. Create a config file
60
+
61
+ We use a config file to specify the network structure and training setting, including optimizer and data augmentation hyperparameters.
62
+
63
+ If you create a new config file, please put it under the configs directory.
64
+ Or just use the provided config file in `$YOLOV6_HOME/configs/*_finetune.py`.
65
+
66
+ ```python
67
+ ## YOLOv6s Model config file
68
+ model = dict(
69
+ type='YOLOv6s',
70
+ pretrained='./weights/yolov6s.pt', # download pretrain model from YOLOv6 github if use pretrained model
71
+ depth_multiple = 0.33,
72
+ width_multiple = 0.50,
73
+ ...
74
+ )
75
+ solver=dict(
76
+ optim='SGD',
77
+ lr_scheduler='Cosine',
78
+ ...
79
+ )
80
+
81
+ data_aug = dict(
82
+ hsv_h=0.015,
83
+ hsv_s=0.7,
84
+ hsv_v=0.4,
85
+ ...
86
+ )
87
+ ```
88
+
89
+
90
+
91
+ ## 3. Train
92
+
93
+ Single GPU
94
+
95
+ ```shell
96
+ python tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/data.yaml --device 0
97
+ ```
98
+
99
+ Multi GPUs (DDP mode recommended)
100
+
101
+ ```shell
102
+ python -m torch.distributed.launch --nproc_per_node 4 tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/data.yaml --device 0,1,2,3
103
+ ```
104
+
105
+
106
+
107
+ ## 4. Evaluation
108
+
109
+ ```shell
110
+ python tools/eval.py --data data/data.yaml --weights output_dir/name/weights/best_ckpt.pt --device 0
111
+ ```
112
+
113
+
114
+
115
+ ## 5. Inference
116
+
117
+ ```shell
118
+ python tools/infer.py --weights output_dir/name/weights/best_ckpt.pt --source img.jpg --device 0
119
+ ```
120
+
121
+
122
+
123
+ ## 6. Deployment
124
+
125
+ Export as ONNX Format
126
+
127
+ ```shell
128
+ python deploy/ONNX/export_onnx.py --weights output_dir/name/weights/best_ckpt.pt --device 0
129
+ ```
packages.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ ffmpeg
2
+ libsm6
3
+ libxext6 -y
4
+ libgl1
5
+ -y libgl1-mesa-glx
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pip install -r requirements.txt
2
+ # python3.8 environment
3
+
4
+ torch>=1.8.0
5
+ torchvision>=0.9.0
6
+ numpy>=1.18.5
7
+ opencv-python>=4.1.2
8
+ PyYAML>=5.3.1
9
+ scipy>=1.4.1
10
+ tqdm>=4.41.0
11
+ addict>=2.4.0
12
+ tensorboard>=2.7.0
13
+ pycocotools>=2.0
14
+ onnx>=1.10.0 # ONNX export
15
+ thop # FLOPs computation
tools/eval.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ import argparse
4
+ import os
5
+ import sys
6
+ import torch
7
+
8
+ ROOT = os.getcwd()
9
+ if str(ROOT) not in sys.path:
10
+ sys.path.append(str(ROOT))
11
+
12
+ from yolov6.core.evaler import Evaler
13
+ from yolov6.utils.events import LOGGER
14
+
15
+
16
+ def get_args_parser(add_help=True):
17
+ parser = argparse.ArgumentParser(description='YOLOv6 PyTorch Evalating', add_help=add_help)
18
+ parser.add_argument('--data', type=str, default='./data/coco.yaml', help='dataset.yaml path')
19
+ parser.add_argument('--weights', type=str, default='./weights/yolov6s.pt', help='model.pt path(s)')
20
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
21
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
22
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
23
+ parser.add_argument('--iou-thres', type=float, default=0.65, help='NMS IoU threshold')
24
+ parser.add_argument('--task', default='val', help='val, or speed')
25
+ parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
26
+ parser.add_argument('--half', default=False, action='store_true', help='whether to use fp16 infer')
27
+ parser.add_argument('--save_dir', type=str, default='runs/val/exp', help='evaluation save dir')
28
+ args = parser.parse_args()
29
+ LOGGER.info(args)
30
+ return args
31
+
32
+
33
+ @torch.no_grad()
34
+ def run(data,
35
+ weights=None,
36
+ batch_size=32,
37
+ img_size=640,
38
+ conf_thres=0.001,
39
+ iou_thres=0.65,
40
+ task='val',
41
+ device='',
42
+ half=False,
43
+ model=None,
44
+ dataloader=None,
45
+ save_dir='',
46
+ ):
47
+ """ Run the evaluation process
48
+
49
+ This function is the main process of evalutaion, supporting image file and dir containing images.
50
+ It has tasks of 'val', 'train' and 'speed'. Task 'train' processes the evaluation during training phase.
51
+ Task 'val' processes the evaluation purely and return the mAP of model.pt. Task 'speed' precesses the
52
+ evaluation of inference speed of model.pt.
53
+
54
+ """
55
+
56
+ # task
57
+ Evaler.check_task(task)
58
+ if not os.path.exists(save_dir):
59
+ os.makedirs(save_dir)
60
+
61
+ # reload thres/device/half/data according task
62
+ conf_thres, iou_thres = Evaler.reload_thres(conf_thres, iou_thres, task)
63
+ device = Evaler.reload_device(device, model, task)
64
+ half = device.type != 'cpu' and half
65
+ data = Evaler.reload_dataset(data) if isinstance(data, str) else data
66
+
67
+ # init
68
+ val = Evaler(data, batch_size, img_size, conf_thres, \
69
+ iou_thres, device, half, save_dir)
70
+ model = val.init_model(model, weights, task)
71
+ dataloader = val.init_data(dataloader, task)
72
+
73
+ # eval
74
+ model.eval()
75
+ pred_result = val.predict_model(model, dataloader, task)
76
+ eval_result = val.eval_model(pred_result, model, dataloader, task)
77
+ return eval_result
78
+
79
+
80
+ def main(args):
81
+ run(**vars(args))
82
+
83
+
84
+ if __name__ == "__main__":
85
+ args = get_args_parser()
86
+ main(args)
tools/infer.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ import argparse
4
+ import os
5
+ import sys
6
+ import os.path as osp
7
+
8
+ import torch
9
+
10
+ ROOT = os.getcwd()
11
+ if str(ROOT) not in sys.path:
12
+ sys.path.append(str(ROOT))
13
+
14
+ from yolov6.utils.events import LOGGER
15
+ from yolov6.core.inferer import Inferer
16
+
17
+
18
+ def get_args_parser(add_help=True):
19
+ parser = argparse.ArgumentParser(description='YOLOv6 PyTorch Inference.', add_help=add_help)
20
+ parser.add_argument('--weights', type=str, default='weights/yolov6s.pt', help='model path(s) for inference.')
21
+ parser.add_argument('--source', type=str, default='data/images', help='the source path, e.g. image-file/dir.')
22
+ parser.add_argument('--yaml', type=str, default='data/coco.yaml', help='data yaml file.')
23
+ parser.add_argument('--img-size', type=int, default=640, help='the image-size(h,w) in inference size.')
24
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold for inference.')
25
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold for inference.')
26
+ parser.add_argument('--max-det', type=int, default=1000, help='maximal inferences per image.')
27
+ parser.add_argument('--device', default='0', help='device to run our model i.e. 0 or 0,1,2,3 or cpu.')
28
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt.')
29
+ parser.add_argument('--save-img', action='store_false', help='save visuallized inference results.')
30
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by classes, e.g. --classes 0, or --classes 0 2 3.')
31
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS.')
32
+ parser.add_argument('--project', default='runs/inference', help='save inference results to project/name.')
33
+ parser.add_argument('--name', default='exp', help='save inference results to project/name.')
34
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels.')
35
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences.')
36
+ parser.add_argument('--half', action='store_true', help='whether to use FP16 half-precision inference.')
37
+
38
+ args = parser.parse_args()
39
+ LOGGER.info(args)
40
+ return args
41
+
42
+ @torch.no_grad()
43
+ def run(weights=osp.join(ROOT, 'yolov6s.pt'),
44
+ source=osp.join(ROOT, 'data/images'),
45
+ yaml=None,
46
+ img_size=640,
47
+ conf_thres=0.25,
48
+ iou_thres=0.45,
49
+ max_det=1000,
50
+ device='',
51
+ save_txt=False,
52
+ save_img=True,
53
+ classes=None,
54
+ agnostic_nms=False,
55
+ project=osp.join(ROOT, 'runs/inference'),
56
+ name='exp',
57
+ hide_labels=False,
58
+ hide_conf=False,
59
+ half=False,
60
+ ):
61
+ """ Inference process
62
+
63
+ This function is the main process of inference, supporting image files or dirs containing images.
64
+
65
+ Args:
66
+ weights: The path of model.pt, e.g. yolov6s.pt
67
+ source: Source path, supporting image files or dirs containing images.
68
+ yaml: Data yaml file, .
69
+ img_size: Inference image-size, e.g. 640
70
+ conf_thres: Confidence threshold in inference, e.g. 0.25
71
+ iou_thres: NMS IOU threshold in inference, e.g. 0.45
72
+ max_det: Maximal detections per image, e.g. 1000
73
+ device: Cuda device, e.e. 0, or 0,1,2,3 or cpu
74
+ save_txt: Save results to *.txt
75
+ save_img: Save visualized inference results
76
+ classes: Filter by class: --class 0, or --class 0 2 3
77
+ agnostic_nms: Class-agnostic NMS
78
+ project: Save results to project/name
79
+ name: Save results to project/name, e.g. 'exp'
80
+ line_thickness: Bounding box thickness (pixels), e.g. 3
81
+ hide_labels: Hide labels, e.g. False
82
+ hide_conf: Hide confidences
83
+ half: Use FP16 half-precision inference, e.g. False
84
+ """
85
+ # create save dir
86
+ save_dir = osp.join(project, name)
87
+ if (save_img or save_txt) and not osp.exists(save_dir):
88
+ os.makedirs(save_dir)
89
+ else:
90
+ LOGGER.warning('Save directory already existed')
91
+ if save_txt:
92
+ os.mkdir(osp.join(save_dir, 'labels'))
93
+
94
+ # Inference
95
+ inferer = Inferer(source, weights, device, yaml, img_size, half)
96
+ inferer.infer(conf_thres, iou_thres, classes, agnostic_nms, max_det, save_dir, save_txt, save_img, hide_labels, hide_conf)
97
+
98
+ if save_txt or save_img:
99
+ LOGGER.info(f"Results saved to {save_dir}")
100
+
101
+
102
+ def main(args):
103
+ run(**vars(args))
104
+
105
+
106
+ if __name__ == "__main__":
107
+ args = get_args_parser()
108
+ main(args)
tools/quantization/mnn/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # Coming soon
tools/quantization/tensorrt/post_training/Calibrator.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Modified by Meituan
3
+ # 2022.6.24
4
+ #
5
+
6
+ # Copyright 2019 NVIDIA Corporation
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+
20
+ import os
21
+ import sys
22
+ import glob
23
+ import random
24
+ import logging
25
+ import cv2
26
+
27
+ import numpy as np
28
+ from PIL import Image
29
+ import tensorrt as trt
30
+ import pycuda.driver as cuda
31
+ import pycuda.autoinit
32
+
33
+ logging.basicConfig(level=logging.DEBUG,
34
+ format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
35
+ datefmt="%Y-%m-%d %H:%M:%S")
36
+ logger = logging.getLogger(__name__)
37
+
38
+ def preprocess_yolov6(image, channels=3, height=224, width=224):
39
+ """Pre-processing for YOLOv6-based Object Detection Models
40
+
41
+ Parameters
42
+ ----------
43
+ image: PIL.Image
44
+ The image resulting from PIL.Image.open(filename) to preprocess
45
+ channels: int
46
+ The number of channels the image has (Usually 1 or 3)
47
+ height: int
48
+ The desired height of the image (usually 640)
49
+ width: int
50
+ The desired width of the image (usually 640)
51
+
52
+ Returns
53
+ -------
54
+ img_data: numpy array
55
+ The preprocessed image data in the form of a numpy array
56
+
57
+ """
58
+ # Get the image in CHW format
59
+ resized_image = image.resize((width, height), Image.BILINEAR)
60
+ img_data = np.asarray(resized_image).astype(np.float32)
61
+
62
+ if len(img_data.shape) == 2:
63
+ # For images without a channel dimension, we stack
64
+ img_data = np.stack([img_data] * 3)
65
+ logger.debug("Received grayscale image. Reshaped to {:}".format(img_data.shape))
66
+ else:
67
+ img_data = img_data.transpose([2, 0, 1])
68
+
69
+ mean_vec = np.array([0.0, 0.0, 0.0])
70
+ stddev_vec = np.array([1.0, 1.0, 1.0])
71
+ assert img_data.shape[0] == channels
72
+
73
+ for i in range(img_data.shape[0]):
74
+ # Scale each pixel to [0, 1] and normalize per channel.
75
+ img_data[i, :, :] = (img_data[i, :, :] / 255.0 - mean_vec[i]) / stddev_vec[i]
76
+
77
+ return img_data
78
+
79
+ def get_int8_calibrator(calib_cache, calib_data, max_calib_size, calib_batch_size):
80
+ # Use calibration cache if it exists
81
+ if os.path.exists(calib_cache):
82
+ logger.info("Skipping calibration files, using calibration cache: {:}".format(calib_cache))
83
+ calib_files = []
84
+ # Use calibration files from validation dataset if no cache exists
85
+ else:
86
+ if not calib_data:
87
+ raise ValueError("ERROR: Int8 mode requested, but no calibration data provided. Please provide --calibration-data /path/to/calibration/files")
88
+
89
+ calib_files = get_calibration_files(calib_data, max_calib_size)
90
+
91
+ # Choose pre-processing function for INT8 calibration
92
+ preprocess_func = preprocess_yolov6
93
+
94
+ int8_calibrator = ImageCalibrator(calibration_files=calib_files,
95
+ batch_size=calib_batch_size,
96
+ cache_file=calib_cache)
97
+ return int8_calibrator
98
+
99
+
100
+ def get_calibration_files(calibration_data, max_calibration_size=None, allowed_extensions=(".jpeg", ".jpg", ".png")):
101
+ """Returns a list of all filenames ending with `allowed_extensions` found in the `calibration_data` directory.
102
+
103
+ Parameters
104
+ ----------
105
+ calibration_data: str
106
+ Path to directory containing desired files.
107
+ max_calibration_size: int
108
+ Max number of files to use for calibration. If calibration_data contains more than this number,
109
+ a random sample of size max_calibration_size will be returned instead. If None, all samples will be used.
110
+
111
+ Returns
112
+ -------
113
+ calibration_files: List[str]
114
+ List of filenames contained in the `calibration_data` directory ending with `allowed_extensions`.
115
+ """
116
+
117
+ logger.info("Collecting calibration files from: {:}".format(calibration_data))
118
+ calibration_files = [path for path in glob.iglob(os.path.join(calibration_data, "**"), recursive=True)
119
+ if os.path.isfile(path) and path.lower().endswith(allowed_extensions)]
120
+ logger.info("Number of Calibration Files found: {:}".format(len(calibration_files)))
121
+
122
+ if len(calibration_files) == 0:
123
+ raise Exception("ERROR: Calibration data path [{:}] contains no files!".format(calibration_data))
124
+
125
+ if max_calibration_size:
126
+ if len(calibration_files) > max_calibration_size:
127
+ logger.warning("Capping number of calibration images to max_calibration_size: {:}".format(max_calibration_size))
128
+ random.seed(42) # Set seed for reproducibility
129
+ calibration_files = random.sample(calibration_files, max_calibration_size)
130
+
131
+ return calibration_files
132
+
133
+
134
+ # https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Int8/EntropyCalibrator2.html
135
+ class ImageCalibrator(trt.IInt8EntropyCalibrator2):
136
+ """INT8 Calibrator Class for Imagenet-based Image Classification Models.
137
+
138
+ Parameters
139
+ ----------
140
+ calibration_files: List[str]
141
+ List of image filenames to use for INT8 Calibration
142
+ batch_size: int
143
+ Number of images to pass through in one batch during calibration
144
+ input_shape: Tuple[int]
145
+ Tuple of integers defining the shape of input to the model (Default: (3, 224, 224))
146
+ cache_file: str
147
+ Name of file to read/write calibration cache from/to.
148
+ preprocess_func: function -> numpy.ndarray
149
+ Pre-processing function to run on calibration data. This should match the pre-processing
150
+ done at inference time. In general, this function should return a numpy array of
151
+ shape `input_shape`.
152
+ """
153
+
154
+ def __init__(self, calibration_files=[], batch_size=32, input_shape=(3, 224, 224),
155
+ cache_file="calibration.cache", use_cv2=False):
156
+ super().__init__()
157
+ self.input_shape = input_shape
158
+ self.cache_file = cache_file
159
+ self.batch_size = batch_size
160
+ self.batch = np.zeros((self.batch_size, *self.input_shape), dtype=np.float32)
161
+ self.device_input = cuda.mem_alloc(self.batch.nbytes)
162
+
163
+ self.files = calibration_files
164
+ self.use_cv2 = use_cv2
165
+ # Pad the list so it is a multiple of batch_size
166
+ if len(self.files) % self.batch_size != 0:
167
+ logger.info("Padding # calibration files to be a multiple of batch_size {:}".format(self.batch_size))
168
+ self.files += calibration_files[(len(calibration_files) % self.batch_size):self.batch_size]
169
+
170
+ self.batches = self.load_batches()
171
+ self.preprocess_func = preprocess_yolov6
172
+
173
+ def load_batches(self):
174
+ # Populates a persistent self.batch buffer with images.
175
+ for index in range(0, len(self.files), self.batch_size):
176
+ for offset in range(self.batch_size):
177
+ if self.use_cv2:
178
+ image = cv2.imread(self.files[index + offset])
179
+ else:
180
+ image = Image.open(self.files[index + offset])
181
+ self.batch[offset] = self.preprocess_func(image, *self.input_shape)
182
+ logger.info("Calibration images pre-processed: {:}/{:}".format(index+self.batch_size, len(self.files)))
183
+ yield self.batch
184
+
185
+ def get_batch_size(self):
186
+ return self.batch_size
187
+
188
+ def get_batch(self, names):
189
+ try:
190
+ # Assume self.batches is a generator that provides batch data.
191
+ batch = next(self.batches)
192
+ # Assume that self.device_input is a device buffer allocated by the constructor.
193
+ cuda.memcpy_htod(self.device_input, batch)
194
+ return [int(self.device_input)]
195
+ except StopIteration:
196
+ # When we're out of batches, we return either [] or None.
197
+ # This signals to TensorRT that there is no calibration data remaining.
198
+ return None
199
+
200
+ def read_calibration_cache(self):
201
+ # If there is a cache, use it instead of calibrating again. Otherwise, implicitly return None.
202
+ if os.path.exists(self.cache_file):
203
+ with open(self.cache_file, "rb") as f:
204
+ logger.info("Using calibration cache to save time: {:}".format(self.cache_file))
205
+ return f.read()
206
+
207
+ def write_calibration_cache(self, cache):
208
+ with open(self.cache_file, "wb") as f:
209
+ logger.info("Caching calibration data for future use: {:}".format(self.cache_file))
210
+ f.write(cache)
tools/quantization/tensorrt/post_training/LICENSE ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ Copyright 2020 NVIDIA Corporation
180
+
181
+ Licensed under the Apache License, Version 2.0 (the "License");
182
+ you may not use this file except in compliance with the License.
183
+ You may obtain a copy of the License at
184
+
185
+ http://www.apache.org/licenses/LICENSE-2.0
186
+
187
+ Unless required by applicable law or agreed to in writing, software
188
+ distributed under the License is distributed on an "AS IS" BASIS,
189
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
190
+ See the License for the specific language governing permissions and
191
+ limitations under the License.
192
+
tools/quantization/tensorrt/post_training/README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ONNX -> TensorRT INT8
2
+ These scripts were last tested using the
3
+ [NGC TensorRT Container Version 20.06-py3](https://ngc.nvidia.com/catalog/containers/nvidia:tensorrt).
4
+ You can see the corresponding framework versions for this container [here](https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel_20.06.html#rel_20.06).
5
+
6
+ ## Quickstart
7
+
8
+ > **NOTE**: This INT8 example is only valid for **fixed-shape** ONNX models at the moment.
9
+ >
10
+ INT8 Calibration on **dynamic-shape** models is now supported, however this example has not been updated
11
+ to reflect that yet. For more details on INT8 Calibration for **dynamic-shape** models, please
12
+ see the [documentation](https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#int8-calib-dynamic-shapes).
13
+
14
+ ### 1. Convert ONNX model to TensorRT INT8
15
+
16
+ See `./onnx_to_tensorrt.py -h` for full list of command line arguments.
17
+
18
+ ```bash
19
+ ./onnx_to_tensorrt.py --explicit-batch \
20
+ --onnx resnet50/model.onnx \
21
+ --fp16 \
22
+ --int8 \
23
+ --calibration-cache="caches/yolov6.cache" \
24
+ -o resnet50.int8.engine
25
+ ```
26
+
27
+ See the [INT8 Calibration](#int8-calibration) section below for details on calibration
28
+ using your own model or different data, where you don't have an existing calibration cache
29
+ or want to create a new one.
30
+
31
+ ## INT8 Calibration
32
+
33
+ See [ImagenetCalibrator.py](ImagenetCalibrator.py) for a reference implementation
34
+ of TensorRT's [IInt8EntropyCalibrator2](https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Int8/EntropyCalibrator2.html).
35
+
36
+ This class can be tweaked to work for other kinds of models, inputs, etc.
37
+
38
+ In the [Quickstart](#quickstart) section above, we made use of a pre-existing cache,
39
+ [caches/yolov6.cache](caches/yolov6.cache), to save time for the sake of an example.
40
+
41
+ However, to calibrate using different data or a different model, you can do so with the `--calibration-data` argument.
42
+
43
+ * This requires that you've mounted a dataset, such as Imagenet, to use for calibration.
44
+ * Add something like `-v /imagenet:/imagenet` to your Docker command in Step (1)
45
+ to mount a dataset found locally at `/imagenet`.
46
+ * You can specify your own `preprocess_func` by defining it inside of `ImageCalibrator.py`
47
+
48
+ ```bash
49
+ # Path to dataset to use for calibration.
50
+ # **Not necessary if you already have a calibration cache from a previous run.
51
+ CALIBRATION_DATA="/imagenet"
52
+
53
+ # Truncate calibration images to a random sample of this amount if more are found.
54
+ # **Not necessary if you already have a calibration cache from a previous run.
55
+ MAX_CALIBRATION_SIZE=512
56
+
57
+ # Calibration cache to be used instead of calibration data if it already exists,
58
+ # or the cache will be created from the calibration data if it doesn't exist.
59
+ CACHE_FILENAME="caches/yolov6.cache"
60
+
61
+ # Path to ONNX model
62
+ ONNX_MODEL="model/yolov6.onnx"
63
+
64
+ # Path to write TensorRT engine to
65
+ OUTPUT="yolov6.int8.engine"
66
+
67
+ # Creates an int8 engine from your ONNX model, creating ${CACHE_FILENAME} based
68
+ # on your ${CALIBRATION_DATA}, unless ${CACHE_FILENAME} already exists, then
69
+ # it will use simply use that instead.
70
+ python3 onnx_to_tensorrt.py --fp16 --int8 -v \
71
+ --max_calibration_size=${MAX_CALIBRATION_SIZE} \
72
+ --calibration-data=${CALIBRATION_DATA} \
73
+ --calibration-cache=${CACHE_FILENAME} \
74
+ --preprocess_func=${PREPROCESS_FUNC} \
75
+ --explicit-batch \
76
+ --onnx ${ONNX_MODEL} -o ${OUTPUT}
77
+
78
+ ```
79
+
80
+ ### Pre-processing
81
+
82
+ In order to calibrate your model correctly, you should `pre-process` your data the same way
83
+ that you would during inference.
tools/quantization/tensorrt/post_training/onnx_to_tensorrt.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ #
4
+ # Modified by Meituan
5
+ # 2022.6.24
6
+ #
7
+
8
+ # Copyright 2019 NVIDIA Corporation
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ import os
23
+ import sys
24
+ import glob
25
+ import math
26
+ import logging
27
+ import argparse
28
+
29
+ import tensorrt as trt
30
+ #sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages')
31
+
32
+ TRT_LOGGER = trt.Logger()
33
+ logging.basicConfig(level=logging.DEBUG,
34
+ format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
35
+ datefmt="%Y-%m-%d %H:%M:%S")
36
+ logger = logging.getLogger(__name__)
37
+
38
+
39
+ def add_profiles(config, inputs, opt_profiles):
40
+ logger.debug("=== Optimization Profiles ===")
41
+ for i, profile in enumerate(opt_profiles):
42
+ for inp in inputs:
43
+ _min, _opt, _max = profile.get_shape(inp.name)
44
+ logger.debug("{} - OptProfile {} - Min {} Opt {} Max {}".format(inp.name, i, _min, _opt, _max))
45
+ config.add_optimization_profile(profile)
46
+
47
+
48
+ def mark_outputs(network):
49
+ # Mark last layer's outputs if not already marked
50
+ # NOTE: This may not be correct in all cases
51
+ last_layer = network.get_layer(network.num_layers-1)
52
+ if not last_layer.num_outputs:
53
+ logger.error("Last layer contains no outputs.")
54
+ return
55
+
56
+ for i in range(last_layer.num_outputs):
57
+ network.mark_output(last_layer.get_output(i))
58
+
59
+
60
+ def check_network(network):
61
+ if not network.num_outputs:
62
+ logger.warning("No output nodes found, marking last layer's outputs as network outputs. Correct this if wrong.")
63
+ mark_outputs(network)
64
+
65
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
66
+ outputs = [network.get_output(i) for i in range(network.num_outputs)]
67
+ max_len = max([len(inp.name) for inp in inputs] + [len(out.name) for out in outputs])
68
+
69
+ logger.debug("=== Network Description ===")
70
+ for i, inp in enumerate(inputs):
71
+ logger.debug("Input {0} | Name: {1:{2}} | Shape: {3}".format(i, inp.name, max_len, inp.shape))
72
+ for i, out in enumerate(outputs):
73
+ logger.debug("Output {0} | Name: {1:{2}} | Shape: {3}".format(i, out.name, max_len, out.shape))
74
+
75
+
76
+ def get_batch_sizes(max_batch_size):
77
+ # Returns powers of 2, up to and including max_batch_size
78
+ max_exponent = math.log2(max_batch_size)
79
+ for i in range(int(max_exponent)+1):
80
+ batch_size = 2**i
81
+ yield batch_size
82
+
83
+ if max_batch_size != batch_size:
84
+ yield max_batch_size
85
+
86
+
87
+ # TODO: This only covers dynamic shape for batch size, not dynamic shape for other dimensions
88
+ def create_optimization_profiles(builder, inputs, batch_sizes=[1,8,16,32,64]):
89
+ # Check if all inputs are fixed explicit batch to create a single profile and avoid duplicates
90
+ if all([inp.shape[0] > -1 for inp in inputs]):
91
+ profile = builder.create_optimization_profile()
92
+ for inp in inputs:
93
+ fbs, shape = inp.shape[0], inp.shape[1:]
94
+ profile.set_shape(inp.name, min=(fbs, *shape), opt=(fbs, *shape), max=(fbs, *shape))
95
+ return [profile]
96
+
97
+ # Otherwise for mixed fixed+dynamic explicit batch inputs, create several profiles
98
+ profiles = {}
99
+ for bs in batch_sizes:
100
+ if not profiles.get(bs):
101
+ profiles[bs] = builder.create_optimization_profile()
102
+
103
+ for inp in inputs:
104
+ shape = inp.shape[1:]
105
+ # Check if fixed explicit batch
106
+ if inp.shape[0] > -1:
107
+ bs = inp.shape[0]
108
+
109
+ profiles[bs].set_shape(inp.name, min=(bs, *shape), opt=(bs, *shape), max=(bs, *shape))
110
+
111
+ return list(profiles.values())
112
+
113
+ def main():
114
+ parser = argparse.ArgumentParser(description="Creates a TensorRT engine from the provided ONNX file.\n")
115
+ parser.add_argument("--onnx", required=True, help="The ONNX model file to convert to TensorRT")
116
+ parser.add_argument("-o", "--output", type=str, default="model.engine", help="The path at which to write the engine")
117
+ parser.add_argument("-b", "--max-batch-size", type=int, help="The max batch size for the TensorRT engine input")
118
+ parser.add_argument("-v", "--verbosity", action="count", help="Verbosity for logging. (None) for ERROR, (-v) for INFO/WARNING/ERROR, (-vv) for VERBOSE.")
119
+ parser.add_argument("--explicit-batch", action='store_true', help="Set trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH.")
120
+ parser.add_argument("--explicit-precision", action='store_true', help="Set trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION.")
121
+ parser.add_argument("--gpu-fallback", action='store_true', help="Set trt.BuilderFlag.GPU_FALLBACK.")
122
+ parser.add_argument("--refittable", action='store_true', help="Set trt.BuilderFlag.REFIT.")
123
+ parser.add_argument("--debug", action='store_true', help="Set trt.BuilderFlag.DEBUG.")
124
+ parser.add_argument("--strict-types", action='store_true', help="Set trt.BuilderFlag.STRICT_TYPES.")
125
+ parser.add_argument("--fp16", action="store_true", help="Attempt to use FP16 kernels when possible.")
126
+ parser.add_argument("--int8", action="store_true", help="Attempt to use INT8 kernels when possible. This should generally be used in addition to the --fp16 flag. \
127
+ ONLY SUPPORTS RESNET-LIKE MODELS SUCH AS RESNET50/VGG16/INCEPTION/etc.")
128
+ parser.add_argument("--calibration-cache", help="(INT8 ONLY) The path to read/write from calibration cache.", default="calibration.cache")
129
+ parser.add_argument("--calibration-data", help="(INT8 ONLY) The directory containing {*.jpg, *.jpeg, *.png} files to use for calibration. (ex: Imagenet Validation Set)", default=None)
130
+ parser.add_argument("--calibration-batch-size", help="(INT8 ONLY) The batch size to use during calibration.", type=int, default=128)
131
+ parser.add_argument("--max-calibration-size", help="(INT8 ONLY) The max number of data to calibrate on from --calibration-data.", type=int, default=2048)
132
+ parser.add_argument("-s", "--simple", action="store_true", help="Use SimpleCalibrator with random data instead of ImagenetCalibrator for INT8 calibration.")
133
+ args, _ = parser.parse_known_args()
134
+
135
+ print(args)
136
+
137
+ # Adjust logging verbosity
138
+ if args.verbosity is None:
139
+ TRT_LOGGER.min_severity = trt.Logger.Severity.ERROR
140
+ # -v
141
+ elif args.verbosity == 1:
142
+ TRT_LOGGER.min_severity = trt.Logger.Severity.INFO
143
+ # -vv
144
+ else:
145
+ TRT_LOGGER.min_severity = trt.Logger.Severity.VERBOSE
146
+ logger.info("TRT_LOGGER Verbosity: {:}".format(TRT_LOGGER.min_severity))
147
+
148
+ # Network flags
149
+ network_flags = 0
150
+ if args.explicit_batch:
151
+ network_flags |= 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
152
+ if args.explicit_precision:
153
+ network_flags |= 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)
154
+
155
+ builder_flag_map = {
156
+ 'gpu_fallback': trt.BuilderFlag.GPU_FALLBACK,
157
+ 'refittable': trt.BuilderFlag.REFIT,
158
+ 'debug': trt.BuilderFlag.DEBUG,
159
+ 'strict_types': trt.BuilderFlag.STRICT_TYPES,
160
+ 'fp16': trt.BuilderFlag.FP16,
161
+ 'int8': trt.BuilderFlag.INT8,
162
+ }
163
+
164
+ # Building engine
165
+ with trt.Builder(TRT_LOGGER) as builder, \
166
+ builder.create_network(network_flags) as network, \
167
+ builder.create_builder_config() as config, \
168
+ trt.OnnxParser(network, TRT_LOGGER) as parser:
169
+
170
+ config.max_workspace_size = 2**30 # 1GiB
171
+
172
+ # Set Builder Config Flags
173
+ for flag in builder_flag_map:
174
+ if getattr(args, flag):
175
+ logger.info("Setting {}".format(builder_flag_map[flag]))
176
+ config.set_flag(builder_flag_map[flag])
177
+
178
+ # Fill network atrributes with information by parsing model
179
+ with open(args.onnx, "rb") as f:
180
+ if not parser.parse(f.read()):
181
+ print('ERROR: Failed to parse the ONNX file: {}'.format(args.onnx))
182
+ for error in range(parser.num_errors):
183
+ print(parser.get_error(error))
184
+ sys.exit(1)
185
+
186
+ # Display network info and check certain properties
187
+ check_network(network)
188
+
189
+ if args.explicit_batch:
190
+ # Add optimization profiles
191
+ batch_sizes = [1, 8, 16, 32, 64]
192
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
193
+ opt_profiles = create_optimization_profiles(builder, inputs, batch_sizes)
194
+ add_profiles(config, inputs, opt_profiles)
195
+ # Implicit Batch Network
196
+ else:
197
+ builder.max_batch_size = args.max_batch_size
198
+ opt_profiles = []
199
+
200
+ # Precision flags
201
+ if args.fp16 and not builder.platform_has_fast_fp16:
202
+ logger.warning("FP16 not supported on this platform.")
203
+
204
+ if args.int8 and not builder.platform_has_fast_int8:
205
+ logger.warning("INT8 not supported on this platform.")
206
+
207
+ if args.int8:
208
+ from Calibrator import ImageCalibrator, get_int8_calibrator # local module
209
+ config.int8_calibrator = get_int8_calibrator(args.calibration_cache,
210
+ args.calibration_data,
211
+ args.max_calibration_size,
212
+ args.calibration_batch_size)
213
+
214
+ logger.info("Building Engine...")
215
+ with builder.build_engine(network, config) as engine, open(args.output, "wb") as f:
216
+ logger.info("Serializing engine to file: {:}".format(args.output))
217
+ f.write(engine.serialize())
218
+
219
+ if __name__ == "__main__":
220
+ main()
tools/quantization/tensorrt/post_training/quant.sh ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path to ONNX model
2
+ # ex: ../yolov6.onnx
3
+ ONNX_MODEL=$1
4
+
5
+ # Path to dataset to use for calibration.
6
+ # **Not necessary if you already have a calibration cache from a previous run.
7
+ CALIBRATION_DATA=$2
8
+
9
+ # Path to Cache file to Serving
10
+ # ex: ./caches/demo.cache
11
+ CACHE_FILENAME=$3
12
+
13
+ # Path to write TensorRT engine to
14
+ OUTPUT=$4
15
+
16
+ # Creates an int8 engine from your ONNX model, creating ${CACHE_FILENAME} based
17
+ # on your ${CALIBRATION_DATA}, unless ${CACHE_FILENAME} already exists, then
18
+ # it will use simply use that instead.
19
+ python3 onnx_to_tensorrt.py --fp16 --int8 -v \
20
+ --calibration-data=${CALIBRATION_DATA} \
21
+ --calibration-cache=${CACHE_FILENAME} \
22
+ --explicit-batch \
23
+ --onnx ${ONNX_MODEL} -o ${OUTPUT}
tools/quantization/tensorrt/requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # pip install -r requirements.txt
2
+ # python3.8 environment
3
+
4
+ tensorrt # TensorRT 8.0+
5
+ pycuda==2020.1 # CUDA 11.0
6
+ nvidia-pyindex
7
+ pytorch-quantization
tools/quantization/tensorrt/training_aware/QAT_quantizer.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # QAT_quantizer.py
3
+ # YOLOv6
4
+ #
5
+ # Created by Meituan on 2022/06/24.
6
+ # Copyright © 2022
7
+ #
8
+
9
+ from absl import logging
10
+ from pytorch_quantization import nn as quant_nn
11
+ from pytorch_quantization import quant_modules
12
+
13
+ # Call this function before defining the model
14
+ def tensorrt_official_qat():
15
+ # Quantization Aware Training is based on Straight Through Estimator (STE) derivative approximation.
16
+ # It is some time known as “quantization aware training”.
17
+
18
+ # PyTorch-Quantization is a toolkit for training and evaluating PyTorch models with simulated quantization.
19
+ # Quantization can be added to the model automatically, or manually, allowing the model to be tuned for accuracy and performance.
20
+ # Quantization is compatible with NVIDIAs high performance integer kernels which leverage integer Tensor Cores.
21
+ # The quantized model can be exported to ONNX and imported by TensorRT 8.0 and later.
22
+ # https://github.com/NVIDIA/TensorRT/blob/main/tools/pytorch-quantization/examples/finetune_quant_resnet50.ipynb
23
+
24
+ # The example to export the
25
+ # model.eval()
26
+ # quant_nn.TensorQuantizer.use_fb_fake_quant = True # We have to shift to pytorch's fake quant ops before exporting the model to ONNX
27
+ # opset_version = 13
28
+
29
+ # Export ONNX for multiple batch sizes
30
+ # print("Creating ONNX file: " + onnx_filename)
31
+ # dummy_input = torch.randn(batch_onnx, 3, 224, 224, device='cuda') #TODO: switch input dims by model
32
+ # torch.onnx.export(model, dummy_input, onnx_filename, verbose=False, opset_version=opset_version, enable_onnx_checker=False, do_constant_folding=True)
33
+ try:
34
+ quant_modules.initialize()
35
+ except NameError:
36
+ logging.info("initialzation error for quant_modules")
37
+
38
+ # def QAT_quantizer():
39
+ # coming soon
tools/train.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ import argparse
4
+ import os
5
+ import os.path as osp
6
+ import torch
7
+ import torch.distributed as dist
8
+ import sys
9
+
10
+ ROOT = os.getcwd()
11
+ if str(ROOT) not in sys.path:
12
+ sys.path.append(str(ROOT))
13
+
14
+ from yolov6.core.engine import Trainer
15
+ from yolov6.utils.config import Config
16
+ from yolov6.utils.events import LOGGER, save_yaml
17
+ from yolov6.utils.envs import get_envs, select_device, set_random_seed
18
+
19
+
20
+ def get_args_parser(add_help=True):
21
+ parser = argparse.ArgumentParser(description='YOLOv6 PyTorch Training', add_help=add_help)
22
+ parser.add_argument('--data-path', default='./data/coco.yaml', type=str, help='dataset path')
23
+ parser.add_argument('--conf-file', default='./configs/yolov6s.py', type=str, help='experiment description file')
24
+ parser.add_argument('--img-size', type=int, default=640, help='train, val image size (pixels)')
25
+ parser.add_argument('--batch-size', default=32, type=int, help='total batch size for all GPUs')
26
+ parser.add_argument('--epochs', default=400, type=int, help='number of total epochs to run')
27
+ parser.add_argument('--workers', default=8, type=int, help='number of data loading workers (default: 8)')
28
+ parser.add_argument('--device', default='0', type=str, help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
29
+ parser.add_argument('--noval', action='store_true', help='only evaluate in final epoch')
30
+ parser.add_argument('--check-images', action='store_true', help='check images when initializing datasets')
31
+ parser.add_argument('--check-labels', action='store_true', help='check label files when initializing datasets')
32
+ parser.add_argument('--output-dir', default='./runs/train', type=str, help='path to save outputs')
33
+ parser.add_argument('--name', default='exp', type=str, help='experiment name, save to output_dir/name')
34
+ parser.add_argument('--dist_url', type=str, default="tcp://127.0.0.1:8888")
35
+ parser.add_argument('--gpu_count', type=int, default=0)
36
+ parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
37
+
38
+ return parser
39
+
40
+
41
+ def check_and_init(args):
42
+ '''check config files and device, and initialize '''
43
+
44
+ # check files
45
+ args.save_dir = osp.join(args.output_dir, args.name)
46
+ os.makedirs(args.save_dir, exist_ok=True)
47
+ cfg = Config.fromfile(args.conf_file)
48
+
49
+ # check device
50
+ device = select_device(args.device)
51
+
52
+ # set random seed
53
+ set_random_seed(1+args.rank, deterministic=(args.rank == -1))
54
+
55
+ # save args
56
+ save_yaml(vars(args), osp.join(args.save_dir, 'args.yaml'))
57
+
58
+ return cfg, device
59
+
60
+
61
+ def main(args):
62
+ '''main function of training'''
63
+ # Setup
64
+ args.rank, args.local_rank, args.world_size = get_envs()
65
+ LOGGER.info(f'training args are: {args}\n')
66
+ cfg, device = check_and_init(args)
67
+
68
+ if args.local_rank != -1: # if DDP mode
69
+ torch.cuda.set_device(args.local_rank)
70
+ device = torch.device('cuda', args.local_rank)
71
+ LOGGER.info('Initializing process group... ')
72
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", \
73
+ init_method=args.dist_url, rank=args.local_rank, world_size=args.world_size)
74
+
75
+ # Start
76
+ trainer = Trainer(args, cfg, device)
77
+ trainer.train()
78
+
79
+ # End
80
+ if args.world_size > 1 and args.rank == 0:
81
+ LOGGER.info('Destroying process group... ')
82
+ dist.destroy_process_group()
83
+
84
+
85
+ if __name__ == '__main__':
86
+ args = get_args_parser().parse_args()
87
+ main(args)
yolov6/core/engine.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ import os
4
+ import time
5
+ from copy import deepcopy
6
+ import os.path as osp
7
+
8
+ from tqdm import tqdm
9
+
10
+ import numpy as np
11
+ import torch
12
+ from torch.cuda import amp
13
+ from torch.nn.parallel import DistributedDataParallel as DDP
14
+ from torch.utils.tensorboard import SummaryWriter
15
+
16
+ import tools.eval as eval
17
+ from yolov6.data.data_load import create_dataloader
18
+ from yolov6.models.yolo import build_model
19
+ from yolov6.models.loss import ComputeLoss
20
+ from yolov6.utils.events import LOGGER, NCOLS, load_yaml, write_tblog
21
+ from yolov6.utils.ema import ModelEMA, de_parallel
22
+ from yolov6.utils.checkpoint import load_state_dict, save_checkpoint, strip_optimizer
23
+ from yolov6.solver.build import build_optimizer, build_lr_scheduler
24
+
25
+
26
+ class Trainer:
27
+ def __init__(self, args, cfg, device):
28
+ self.args = args
29
+ self.cfg = cfg
30
+ self.device = device
31
+
32
+ self.rank = args.rank
33
+ self.local_rank = args.local_rank
34
+ self.world_size = args.world_size
35
+ self.main_process = self.rank in [-1, 0]
36
+ self.save_dir = args.save_dir
37
+ # get data loader
38
+ self.data_dict = load_yaml(args.data_path)
39
+ self.num_classes = self.data_dict['nc']
40
+ self.train_loader, self.val_loader = self.get_data_loader(args, cfg, self.data_dict)
41
+ # get model and optimizer
42
+ model = self.get_model(args, cfg, self.num_classes, device)
43
+ self.optimizer = self.get_optimizer(args, cfg, model)
44
+ self.scheduler, self.lf = self.get_lr_scheduler(args, cfg, self.optimizer)
45
+ self.ema = ModelEMA(model) if self.main_process else None
46
+ self.model = self.parallel_model(args, model, device)
47
+ self.model.nc, self.model.names = self.data_dict['nc'], self.data_dict['names']
48
+ # tensorboard
49
+ self.tblogger = SummaryWriter(self.save_dir) if self.main_process else None
50
+
51
+ self.start_epoch = 0
52
+ self.max_epoch = args.epochs
53
+ self.max_stepnum = len(self.train_loader)
54
+ self.batch_size = args.batch_size
55
+ self.img_size = args.img_size
56
+
57
+ # Training Process
58
+ def train(self):
59
+ try:
60
+ self.train_before_loop()
61
+ for self.epoch in range(self.start_epoch, self.max_epoch):
62
+ self.train_in_loop()
63
+
64
+ except Exception as _:
65
+ LOGGER.error('ERROR in training loop or eval/save model.')
66
+ raise
67
+ finally:
68
+ self.train_after_loop()
69
+
70
+ # Training loop for each epoch
71
+ def train_in_loop(self):
72
+ try:
73
+ self.prepare_for_steps()
74
+ for self.step, self.batch_data in self.pbar:
75
+ self.train_in_steps()
76
+ self.print_details()
77
+ except Exception as _:
78
+ LOGGER.error('ERROR in training steps.')
79
+ raise
80
+ try:
81
+ self.eval_and_save()
82
+ except Exception as _:
83
+ LOGGER.error('ERROR in evaluate and save model.')
84
+ raise
85
+
86
+ # Training loop for batchdata
87
+ def train_in_steps(self):
88
+ images, targets = self.prepro_data(self.batch_data, self.device)
89
+ # forward
90
+ with amp.autocast(enabled=self.device != 'cpu'):
91
+ preds = self.model(images)
92
+ total_loss, loss_items = self.compute_loss(preds, targets)
93
+ if self.rank != -1:
94
+ total_loss *= self.world_size
95
+ # backward
96
+ self.scaler.scale(total_loss).backward()
97
+ self.loss_items = loss_items
98
+ self.update_optimizer()
99
+
100
+ def eval_and_save(self):
101
+ epoch_sub = self.max_epoch - self.epoch
102
+ val_period = 20 if epoch_sub > 100 else 1 # to fasten training time, evaluate in every 20 epochs for the early stage.
103
+ is_val_epoch = (not self.args.noval or (epoch_sub == 1)) and (self.epoch % val_period == 0)
104
+ if self.main_process:
105
+ self.ema.update_attr(self.model, include=['nc', 'names', 'stride']) # update attributes for ema model
106
+ if is_val_epoch:
107
+ self.eval_model()
108
+ self.ap = self.evaluate_results[0] * 0.1 + self.evaluate_results[1] * 0.9
109
+ self.best_ap = max(self.ap, self.best_ap)
110
+ # save ckpt
111
+ ckpt = {
112
+ 'model': deepcopy(de_parallel(self.model)).half(),
113
+ 'ema': deepcopy(self.ema.ema).half(),
114
+ 'updates': self.ema.updates,
115
+ 'optimizer': self.optimizer.state_dict(),
116
+ 'epoch': self.epoch,
117
+ }
118
+
119
+ save_ckpt_dir = osp.join(self.save_dir, 'weights')
120
+ save_checkpoint(ckpt, (is_val_epoch) and (self.ap == self.best_ap), save_ckpt_dir, model_name='last_ckpt')
121
+ del ckpt
122
+ # log for tensorboard
123
+ write_tblog(self.tblogger, self.epoch, self.evaluate_results, self.mean_loss)
124
+
125
+ def eval_model(self):
126
+ results = eval.run(self.data_dict,
127
+ batch_size=self.batch_size // self.world_size * 2,
128
+ img_size=self.img_size,
129
+ model=self.ema.ema,
130
+ dataloader=self.val_loader,
131
+ save_dir=self.save_dir,
132
+ task='train')
133
+
134
+ LOGGER.info(f"Epoch: {self.epoch} | [email protected]: {results[0]} | [email protected]:0.95: {results[1]}")
135
+ self.evaluate_results = results[:2]
136
+
137
+ def train_before_loop(self):
138
+ LOGGER.info('Training start...')
139
+ self.start_time = time.time()
140
+ self.warmup_stepnum = max(round(self.cfg.solver.warmup_epochs * self.max_stepnum), 1000)
141
+ self.scheduler.last_epoch = self.start_epoch - 1
142
+ self.last_opt_step = -1
143
+ self.scaler = amp.GradScaler(enabled=self.device != 'cpu')
144
+
145
+ self.best_ap, self.ap = 0.0, 0.0
146
+ self.evaluate_results = (0, 0) # AP50, AP50_95
147
+ self.compute_loss = ComputeLoss(iou_type=self.cfg.model.head.iou_type)
148
+
149
+ def prepare_for_steps(self):
150
+ if self.epoch > self.start_epoch:
151
+ self.scheduler.step()
152
+ self.model.train()
153
+ if self.rank != -1:
154
+ self.train_loader.sampler.set_epoch(self.epoch)
155
+ self.mean_loss = torch.zeros(4, device=self.device)
156
+ self.optimizer.zero_grad()
157
+
158
+ LOGGER.info(('\n' + '%10s' * 5) % ('Epoch', 'iou_loss', 'l1_loss', 'obj_loss', 'cls_loss'))
159
+ self.pbar = enumerate(self.train_loader)
160
+ if self.main_process:
161
+ self.pbar = tqdm(self.pbar, total=self.max_stepnum, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
162
+
163
+ # Print loss after each steps
164
+ def print_details(self):
165
+ if self.main_process:
166
+ self.mean_loss = (self.mean_loss * self.step + self.loss_items) / (self.step + 1)
167
+ self.pbar.set_description(('%10s' + '%10.4g' * 4) % (f'{self.epoch}/{self.max_epoch - 1}', \
168
+ *(self.mean_loss)))
169
+
170
+ # Empty cache if training finished
171
+ def train_after_loop(self):
172
+ if self.main_process:
173
+ LOGGER.info(f'\nTraining completed in {(time.time() - self.start_time) / 3600:.3f} hours.')
174
+ save_ckpt_dir = osp.join(self.save_dir, 'weights')
175
+ strip_optimizer(save_ckpt_dir) # strip optimizers for saved pt model
176
+ if self.device != 'cpu':
177
+ torch.cuda.empty_cache()
178
+
179
+ def update_optimizer(self):
180
+ curr_step = self.step + self.max_stepnum * self.epoch
181
+ self.accumulate = max(1, round(64 / self.batch_size))
182
+ if curr_step <= self.warmup_stepnum:
183
+ self.accumulate = max(1, np.interp(curr_step, [0, self.warmup_stepnum], [1, 64 / self.batch_size]).round())
184
+ for k, param in enumerate(self.optimizer.param_groups):
185
+ warmup_bias_lr = self.cfg.solver.warmup_bias_lr if k == 2 else 0.0
186
+ param['lr'] = np.interp(curr_step, [0, self.warmup_stepnum], [warmup_bias_lr, param['initial_lr'] * self.lf(self.epoch)])
187
+ if 'momentum' in param:
188
+ param['momentum'] = np.interp(curr_step, [0, self.warmup_stepnum], [self.cfg.solver.warmup_momentum, self.cfg.solver.momentum])
189
+ if curr_step - self.last_opt_step >= self.accumulate:
190
+ self.scaler.step(self.optimizer)
191
+ self.scaler.update()
192
+ self.optimizer.zero_grad()
193
+ if self.ema:
194
+ self.ema.update(self.model)
195
+ self.last_opt_step = curr_step
196
+
197
+ @staticmethod
198
+ def get_data_loader(args, cfg, data_dict):
199
+ train_path, val_path = data_dict['train'], data_dict['val']
200
+ # check data
201
+ nc = int(data_dict['nc'])
202
+ class_names = data_dict['names']
203
+ assert len(class_names) == nc, f'the length of class names does not match the number of classes defined'
204
+ grid_size = max(int(max(cfg.model.head.strides)), 32)
205
+ # create train dataloader
206
+ train_loader = create_dataloader(train_path, args.img_size, args.batch_size // args.world_size, grid_size,
207
+ hyp=dict(cfg.data_aug), augment=True, rect=False, rank=args.local_rank,
208
+ workers=args.workers, shuffle=True, check_images=args.check_images,
209
+ check_labels=args.check_labels, class_names=class_names, task='train')[0]
210
+ # create val dataloader
211
+ val_loader = None
212
+ if args.rank in [-1, 0]:
213
+ val_loader = create_dataloader(val_path, args.img_size, args.batch_size // args.world_size * 2, grid_size,
214
+ hyp=dict(cfg.data_aug), rect=True, rank=-1, pad=0.5,
215
+ workers=args.workers, check_images=args.check_images,
216
+ check_labels=args.check_labels, class_names=class_names, task='val')[0]
217
+
218
+ return train_loader, val_loader
219
+
220
+ @staticmethod
221
+ def prepro_data(batch_data, device):
222
+ images = batch_data[0].to(device, non_blocking=True).float() / 255
223
+ targets = batch_data[1].to(device)
224
+ return images, targets
225
+
226
+ @staticmethod
227
+ def get_model(args, cfg, nc, device):
228
+ model = build_model(cfg, nc, device)
229
+ weights = cfg.model.pretrained
230
+ if weights: # finetune if pretrained model is set
231
+ LOGGER.info(f'Loading state_dict from {weights} for fine-tuning...')
232
+ model = load_state_dict(weights, model, map_location=device)
233
+ LOGGER.info('Model: {}'.format(model))
234
+ return model
235
+
236
+ @staticmethod
237
+ def parallel_model(args, model, device):
238
+ # If DP mode
239
+ dp_mode = device.type != 'cpu' and args.rank == -1
240
+ if dp_mode and torch.cuda.device_count() > 1:
241
+ LOGGER.warning('WARNING: DP not recommended, use DDP instead.\n')
242
+ model = torch.nn.DataParallel(model)
243
+
244
+ # If DDP mode
245
+ ddp_mode = device.type != 'cpu' and args.rank != -1
246
+ if ddp_mode:
247
+ model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
248
+
249
+ return model
250
+
251
+ @staticmethod
252
+ def get_optimizer(args, cfg, model):
253
+ accumulate = max(1, round(64 / args.batch_size))
254
+ cfg.solver.weight_decay *= args.batch_size * accumulate / 64
255
+ optimizer = build_optimizer(cfg, model)
256
+ return optimizer
257
+
258
+ @staticmethod
259
+ def get_lr_scheduler(args, cfg, optimizer):
260
+ epochs = args.epochs
261
+ lr_scheduler, lf = build_lr_scheduler(cfg, optimizer, epochs)
262
+ return lr_scheduler, lf
yolov6/core/evaler.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ import os
4
+ from tqdm import tqdm
5
+ import numpy as np
6
+ import json
7
+ import torch
8
+ import yaml
9
+ from pathlib import Path
10
+
11
+ from pycocotools.coco import COCO
12
+ from pycocotools.cocoeval import COCOeval
13
+
14
+ from yolov6.data.data_load import create_dataloader
15
+ from yolov6.utils.events import LOGGER, NCOLS
16
+ from yolov6.utils.nms import non_max_suppression
17
+ from yolov6.utils.checkpoint import load_checkpoint
18
+ from yolov6.utils.torch_utils import time_sync, get_model_info
19
+
20
+ '''
21
+
22
+ python tools/eval.py --task 'train'/'val'/'speed'
23
+
24
+ '''
25
+
26
+
27
+ class Evaler:
28
+ def __init__(self,
29
+ data,
30
+ batch_size=32,
31
+ img_size=640,
32
+ conf_thres=0.001,
33
+ iou_thres=0.65,
34
+ device='',
35
+ half=True,
36
+ save_dir=''):
37
+ self.data = data
38
+ self.batch_size = batch_size
39
+ self.img_size = img_size
40
+ self.conf_thres = conf_thres
41
+ self.iou_thres = iou_thres
42
+ self.device = device
43
+ self.half = half
44
+ self.save_dir = save_dir
45
+
46
+ def init_model(self, model, weights, task):
47
+ if task != 'train':
48
+ model = load_checkpoint(weights, map_location=self.device)
49
+ self.stride = int(model.stride.max())
50
+ if self.device.type != 'cpu':
51
+ model(torch.zeros(1, 3, self.img_size, self.img_size).to(self.device).type_as(next(model.parameters())))
52
+ # switch to deploy
53
+ from yolov6.layers.common import RepVGGBlock
54
+ for layer in model.modules():
55
+ if isinstance(layer, RepVGGBlock):
56
+ layer.switch_to_deploy()
57
+ LOGGER.info("Switch model to deploy modality.")
58
+ LOGGER.info("Model Summary: {}".format(get_model_info(model, self.img_size)))
59
+ model.half() if self.half else model.float()
60
+ return model
61
+
62
+ def init_data(self, dataloader, task):
63
+ '''Initialize dataloader.
64
+ Returns a dataloader for task val or speed.
65
+ '''
66
+ self.is_coco = isinstance(self.data.get('val'), str) and 'coco' in self.data['val'] # COCO dataset
67
+ self.ids = self.coco80_to_coco91_class() if self.is_coco else list(range(1000))
68
+ if task != 'train':
69
+ pad = 0.0 if task == 'speed' else 0.5
70
+ dataloader = create_dataloader(self.data[task if task in ('train', 'val', 'test') else 'val'],
71
+ self.img_size, self.batch_size, self.stride, pad=pad, rect=True,
72
+ class_names=self.data['names'], task=task)[0]
73
+ return dataloader
74
+
75
+ def predict_model(self, model, dataloader, task):
76
+ '''Model prediction
77
+ Predicts the whole dataset and gets the prediced results and inference time.
78
+ '''
79
+ self.speed_result = torch.zeros(4, device=self.device)
80
+ pred_results = []
81
+ pbar = tqdm(dataloader, desc="Inferencing model in val datasets.", ncols=NCOLS)
82
+ for imgs, targets, paths, shapes in pbar:
83
+ # pre-process
84
+ t1 = time_sync()
85
+ imgs = imgs.to(self.device, non_blocking=True)
86
+ imgs = imgs.half() if self.half else imgs.float()
87
+ imgs /= 255
88
+ self.speed_result[1] += time_sync() - t1 # pre-process time
89
+
90
+ # Inference
91
+ t2 = time_sync()
92
+ outputs = model(imgs)
93
+ self.speed_result[2] += time_sync() - t2 # inference time
94
+
95
+ # post-process
96
+ t3 = time_sync()
97
+ outputs = non_max_suppression(outputs, self.conf_thres, self.iou_thres, multi_label=True)
98
+ self.speed_result[3] += time_sync() - t3 # post-process time
99
+ self.speed_result[0] += len(outputs)
100
+
101
+ # save result
102
+ pred_results.extend(self.convert_to_coco_format(outputs, imgs, paths, shapes, self.ids))
103
+ return pred_results
104
+
105
+ def eval_model(self, pred_results, model, dataloader, task):
106
+ '''Evaluate models
107
+ For task speed, this function only evaluates the speed of model and outputs inference time.
108
+ For task val, this function evalutates the speed and mAP by pycocotools, and returns
109
+ inference time and mAP value.
110
+ '''
111
+ LOGGER.info(f'\nEvaluating speed.')
112
+ self.eval_speed(task)
113
+
114
+ LOGGER.info(f'\nEvaluating mAP by pycocotools.')
115
+ if task != 'speed' and len(pred_results):
116
+ if 'anno_path' in self.data:
117
+ anno_json = self.data['anno_path']
118
+ else:
119
+ # generated coco format labels in dataset initialization
120
+ dataset_root = os.path.dirname(os.path.dirname(self.data['val']))
121
+ base_name = os.path.basename(self.data['val'])
122
+ anno_json = os.path.join(dataset_root, 'annotations', f'instances_{base_name}.json')
123
+ pred_json = os.path.join(self.save_dir, "predictions.json")
124
+ LOGGER.info(f'Saving {pred_json}...')
125
+ with open(pred_json, 'w') as f:
126
+ json.dump(pred_results, f)
127
+
128
+ anno = COCO(anno_json)
129
+ pred = anno.loadRes(pred_json)
130
+ cocoEval = COCOeval(anno, pred, 'bbox')
131
+ if self.is_coco:
132
+ imgIds = [int(os.path.basename(x).split(".")[0])
133
+ for x in dataloader.dataset.img_paths]
134
+ cocoEval.params.imgIds = imgIds
135
+ cocoEval.evaluate()
136
+ cocoEval.accumulate()
137
+ cocoEval.summarize()
138
+ map, map50 = cocoEval.stats[:2] # update results ([email protected]:0.95, [email protected])
139
+ # Return results
140
+ model.float() # for training
141
+ if task != 'train':
142
+ LOGGER.info(f"Results saved to {self.save_dir}")
143
+ return (map50, map)
144
+ return (0.0, 0.0)
145
+
146
+ def eval_speed(self, task):
147
+ '''Evaluate model inference speed.'''
148
+ if task != 'train':
149
+ n_samples = self.speed_result[0].item()
150
+ pre_time, inf_time, nms_time = 1000 * self.speed_result[1:].cpu().numpy() / n_samples
151
+ for n, v in zip(["pre-process", "inference", "NMS"],[pre_time, inf_time, nms_time]):
152
+ LOGGER.info("Average {} time: {:.2f} ms".format(n, v))
153
+
154
+ def box_convert(self, x):
155
+ # Convert boxes with shape [n, 4] from [x1, y1, x2, y2] to [x, y, w, h] where x1y1=top-left, x2y2=bottom-right
156
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
157
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
158
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
159
+ y[:, 2] = x[:, 2] - x[:, 0] # width
160
+ y[:, 3] = x[:, 3] - x[:, 1] # height
161
+ return y
162
+
163
+ def scale_coords(self, img1_shape, coords, img0_shape, ratio_pad=None):
164
+ # Rescale coords (xyxy) from img1_shape to img0_shape
165
+ if ratio_pad is None: # calculate from img0_shape
166
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
167
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
168
+ else:
169
+ gain = ratio_pad[0][0]
170
+ pad = ratio_pad[1]
171
+
172
+ coords[:, [0, 2]] -= pad[0] # x padding
173
+ coords[:, [1, 3]] -= pad[1] # y padding
174
+ coords[:, :4] /= gain
175
+ if isinstance(coords, torch.Tensor): # faster individually
176
+ coords[:, 0].clamp_(0, img0_shape[1]) # x1
177
+ coords[:, 1].clamp_(0, img0_shape[0]) # y1
178
+ coords[:, 2].clamp_(0, img0_shape[1]) # x2
179
+ coords[:, 3].clamp_(0, img0_shape[0]) # y2
180
+ else: # np.array (faster grouped)
181
+ coords[:, [0, 2]] = coords[:, [0, 2]].clip(0, img0_shape[1]) # x1, x2
182
+ coords[:, [1, 3]] = coords[:, [1, 3]].clip(0, img0_shape[0]) # y1, y2
183
+ return coords
184
+
185
+ def convert_to_coco_format(self, outputs, imgs, paths, shapes, ids):
186
+ pred_results = []
187
+ for i, pred in enumerate(outputs):
188
+ if len(pred) == 0:
189
+ continue
190
+ path, shape = Path(paths[i]), shapes[i][0]
191
+ self.scale_coords(imgs[i].shape[1:], pred[:, :4], shape, shapes[i][1])
192
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
193
+ bboxes = self.box_convert(pred[:, 0:4])
194
+ bboxes[:, :2] -= bboxes[:, 2:] / 2
195
+ cls = pred[:, 5]
196
+ scores = pred[:, 4]
197
+ for ind in range(pred.shape[0]):
198
+ category_id = ids[int(cls[ind])]
199
+ bbox = [round(x, 3) for x in bboxes[ind].tolist()]
200
+ score = round(scores[ind].item(), 5)
201
+ pred_data = {
202
+ "image_id": image_id,
203
+ "category_id": category_id,
204
+ "bbox": bbox,
205
+ "score": score
206
+ }
207
+ pred_results.append(pred_data)
208
+ return pred_results
209
+
210
+ @staticmethod
211
+ def check_task(task):
212
+ if task not in ['train','val','speed']:
213
+ raise Exception("task argument error: only support 'train' / 'val' / 'speed' task.")
214
+
215
+ @staticmethod
216
+ def reload_thres(conf_thres, iou_thres, task):
217
+ '''Sets conf and iou threshold for task val/speed'''
218
+ if task != 'train':
219
+ if task == 'val':
220
+ conf_thres = 0.001
221
+ if task == 'speed':
222
+ conf_thres = 0.25
223
+ iou_thres = 0.45
224
+ return conf_thres, iou_thres
225
+
226
+ @staticmethod
227
+ def reload_device(device, model, task):
228
+ # device = 'cpu' or '0' or '0,1,2,3'
229
+ if task == 'train':
230
+ device = next(model.parameters()).device
231
+ else:
232
+ if device == 'cpu':
233
+ os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
234
+ elif device:
235
+ os.environ['CUDA_VISIBLE_DEVICES'] = device
236
+ assert torch.cuda.is_available()
237
+ cuda = device != 'cpu' and torch.cuda.is_available()
238
+ device = torch.device('cuda:0' if cuda else 'cpu')
239
+ return device
240
+
241
+ @staticmethod
242
+ def reload_dataset(data):
243
+ with open(data, errors='ignore') as yaml_file:
244
+ data = yaml.safe_load(yaml_file)
245
+ val = data.get('val')
246
+ if not os.path.exists(val):
247
+ raise Exception('Dataset not found.')
248
+ return data
249
+
250
+ @staticmethod
251
+ def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
252
+ # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
253
+ x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20,
254
+ 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
255
+ 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
256
+ 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79,
257
+ 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
258
+ return x
yolov6/core/inferer.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ import os
4
+ import os.path as osp
5
+ import math
6
+
7
+ from tqdm import tqdm
8
+
9
+ import numpy as np
10
+ import cv2
11
+ import torch
12
+ from PIL import ImageFont
13
+
14
+ from yolov6.utils.events import LOGGER, load_yaml
15
+
16
+ from yolov6.layers.common import DetectBackend
17
+ from yolov6.data.data_augment import letterbox
18
+ from yolov6.utils.nms import non_max_suppression
19
+
20
+
21
+ class Inferer:
22
+ def __init__(self, source, weights, device, yaml, img_size, half):
23
+ import glob
24
+ from yolov6.data.datasets import IMG_FORMATS
25
+
26
+ self.__dict__.update(locals())
27
+
28
+ # Init model
29
+ self.device = device
30
+ self.img_size = img_size
31
+ cuda = self.device != 'cpu' and torch.cuda.is_available()
32
+ self.device = torch.device('cuda:0' if cuda else 'cpu')
33
+ self.model = DetectBackend(weights, device=self.device)
34
+ self.stride = self.model.stride
35
+ self.class_names = load_yaml(yaml)['names']
36
+ self.img_size = self.check_img_size(self.img_size, s=self.stride) # check image size
37
+
38
+ # Half precision
39
+ if half & (self.device.type != 'cpu'):
40
+ self.model.model.half()
41
+ else:
42
+ self.model.model.float()
43
+ half = False
44
+
45
+ if self.device.type != 'cpu':
46
+ self.model(torch.zeros(1, 3, *self.img_size).to(self.device).type_as(next(self.model.model.parameters()))) # warmup
47
+
48
+ # Load data
49
+ if os.path.isdir(source):
50
+ img_paths = sorted(glob.glob(os.path.join(source, '*.*'))) # dir
51
+ elif os.path.isfile(source):
52
+ img_paths = [source] # files
53
+ else:
54
+ raise Exception(f'Invalid path: {source}')
55
+ self.img_paths = [img_path for img_path in img_paths if img_path.split('.')[-1].lower() in IMG_FORMATS]
56
+
57
+ def infer(self, conf_thres, iou_thres, classes, agnostic_nms, max_det, save_dir, save_txt, save_img, hide_labels, hide_conf):
58
+ ''' Model Inference and results visualization '''
59
+
60
+ for img_path in tqdm(self.img_paths):
61
+ img, img_src = self.precess_image(img_path, self.img_size, self.stride, self.half)
62
+ img = img.to(self.device)
63
+ if len(img.shape) == 3:
64
+ img = img[None]
65
+ # expand for batch dim
66
+ pred_results = self.model(img)
67
+ det = non_max_suppression(pred_results, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)[0]
68
+
69
+ save_path = osp.join(save_dir, osp.basename(img_path)) # im.jpg
70
+ txt_path = osp.join(save_dir, 'labels', osp.basename(img_path).split('.')[0])
71
+
72
+ gn = torch.tensor(img_src.shape)[[1, 0, 1, 0]] # normalization gain whwh
73
+ img_ori = img_src
74
+
75
+ # check image and font
76
+ assert img_ori.data.contiguous, 'Image needs to be contiguous. Please apply to input images with np.ascontiguousarray(im).'
77
+ self.font_check()
78
+
79
+ if len(det):
80
+ det[:, :4] = self.rescale(img.shape[2:], det[:, :4], img_src.shape).round()
81
+
82
+ for *xyxy, conf, cls in reversed(det):
83
+ if save_txt: # Write to file
84
+ xywh = (self.box_convert(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
85
+ line = (cls, *xywh, conf)
86
+ with open(txt_path + '.txt', 'a') as f:
87
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
88
+
89
+ if save_img:
90
+ class_num = int(cls) # integer class
91
+ label = None if hide_labels else (self.class_names[class_num] if hide_conf else f'{self.class_names[class_num]} {conf:.2f}')
92
+
93
+ self.plot_box_and_label(img_ori, max(round(sum(img_ori.shape) / 2 * 0.003), 2), xyxy, label, color=self.generate_colors(class_num, True))
94
+
95
+ img_src = np.asarray(img_ori)
96
+
97
+ # Save results (image with detections)
98
+ if save_img:
99
+ cv2.imwrite(save_path, img_src)
100
+
101
+ @staticmethod
102
+ def precess_image(path, img_size, stride, half):
103
+ '''Process image before image inference.'''
104
+ try:
105
+ img_src = cv2.imread(path)
106
+ assert img_src is not None, f'Invalid image: {path}'
107
+ except Exception as e:
108
+ LOGGER.Warning(e)
109
+ image = letterbox(img_src, img_size, stride=stride)[0]
110
+
111
+ # Convert
112
+ image = image.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
113
+ image = torch.from_numpy(np.ascontiguousarray(image))
114
+ image = image.half() if half else image.float() # uint8 to fp16/32
115
+ image /= 255 # 0 - 255 to 0.0 - 1.0
116
+
117
+ return image, img_src
118
+
119
+ @staticmethod
120
+ def rescale(ori_shape, boxes, target_shape):
121
+ '''Rescale the output to the original image shape'''
122
+ ratio = min(ori_shape[0] / target_shape[0], ori_shape[1] / target_shape[1])
123
+ padding = (ori_shape[1] - target_shape[1] * ratio) / 2, (ori_shape[0] - target_shape[0] * ratio) / 2
124
+
125
+ boxes[:, [0, 2]] -= padding[0]
126
+ boxes[:, [1, 3]] -= padding[1]
127
+ boxes[:, :4] /= ratio
128
+
129
+ boxes[:, 0].clamp_(0, target_shape[1]) # x1
130
+ boxes[:, 1].clamp_(0, target_shape[0]) # y1
131
+ boxes[:, 2].clamp_(0, target_shape[1]) # x2
132
+ boxes[:, 3].clamp_(0, target_shape[0]) # y2
133
+
134
+ return boxes
135
+
136
+ def check_img_size(self, img_size, s=32, floor=0):
137
+ """Make sure image size is a multiple of stride s in each dimension, and return a new shape list of image."""
138
+ if isinstance(img_size, int): # integer i.e. img_size=640
139
+ new_size = max(self.make_divisible(img_size, int(s)), floor)
140
+ elif isinstance(img_size, list): # list i.e. img_size=[640, 480]
141
+ new_size = [max(self.make_divisible(x, int(s)), floor) for x in img_size]
142
+ else:
143
+ raise Exception(f"Unsupported type of img_size: {type(img_size)}")
144
+
145
+ if new_size != img_size:
146
+ print(f'WARNING: --img-size {img_size} must be multiple of max stride {s}, updating to {new_size}')
147
+ return new_size if isinstance(img_size,list) else [new_size]*2
148
+
149
+ def make_divisible(self, x, divisor):
150
+ # Upward revision the value x to make it evenly divisible by the divisor.
151
+ return math.ceil(x / divisor) * divisor
152
+
153
+ @staticmethod
154
+ def plot_box_and_label(image, lw, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
155
+ # Add one xyxy box to image with label
156
+ p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
157
+ cv2.rectangle(image, p1, p2, color, thickness=lw, lineType=cv2.LINE_AA)
158
+ if label:
159
+ tf = max(lw - 1, 1) # font thickness
160
+ w, h = cv2.getTextSize(label, 0, fontScale=lw / 3, thickness=tf)[0] # text width, height
161
+ outside = p1[1] - h - 3 >= 0 # label fits outside box
162
+ p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
163
+ cv2.rectangle(image, p1, p2, color, -1, cv2.LINE_AA) # filled
164
+ cv2.putText(image, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, lw / 3, txt_color,
165
+ thickness=tf, lineType=cv2.LINE_AA)
166
+
167
+ @staticmethod
168
+ def font_check(font='./yolov6/utils/Arial.ttf', size=10):
169
+ # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
170
+ assert osp.exists(font), f'font path not exists: {font}'
171
+ try:
172
+ return ImageFont.truetype(str(font) if font.exists() else font.name, size)
173
+ except Exception as e: # download if missing
174
+ return ImageFont.truetype(str(font), size)
175
+
176
+ @staticmethod
177
+ def box_convert(x):
178
+ # Convert boxes with shape [n, 4] from [x1, y1, x2, y2] to [x, y, w, h] where x1y1=top-left, x2y2=bottom-right
179
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
180
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
181
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
182
+ y[:, 2] = x[:, 2] - x[:, 0] # width
183
+ y[:, 3] = x[:, 3] - x[:, 1] # height
184
+ return y
185
+
186
+ @staticmethod
187
+ def generate_colors(i, bgr=False):
188
+ hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
189
+ '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
190
+ palette = []
191
+ for iter in hex:
192
+ h = '#' + iter
193
+ palette.append(tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)))
194
+ num = len(palette)
195
+ color = palette[int(i) % num]
196
+ return (color[2], color[1], color[0]) if bgr else color
yolov6/data/data_augment.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ # This code is based on
4
+ # https://github.com/ultralytics/yolov5/blob/master/utils/dataloaders.py
5
+
6
+ import math
7
+ import random
8
+
9
+ import cv2
10
+ import numpy as np
11
+
12
+ def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
13
+ # HSV color-space augmentation
14
+ if hgain or sgain or vgain:
15
+ r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
16
+ hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
17
+ dtype = im.dtype # uint8
18
+
19
+ x = np.arange(0, 256, dtype=r.dtype)
20
+ lut_hue = ((x * r[0]) % 180).astype(dtype)
21
+ lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
22
+ lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
23
+
24
+ im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
25
+ cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
26
+
27
+
28
+
29
+ def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
30
+ # Resize and pad image while meeting stride-multiple constraints
31
+ shape = im.shape[:2] # current shape [height, width]
32
+ if isinstance(new_shape, int):
33
+ new_shape = (new_shape, new_shape)
34
+
35
+ # Scale ratio (new / old)
36
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
37
+ if not scaleup: # only scale down, do not scale up (for better val mAP)
38
+ r = min(r, 1.0)
39
+
40
+ # Compute padding
41
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
42
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
43
+
44
+ if auto: # minimum rectangle
45
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
46
+
47
+ dw /= 2 # divide padding into 2 sides
48
+ dh /= 2
49
+
50
+ if shape[::-1] != new_unpad: # resize
51
+ im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
52
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
53
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
54
+ im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
55
+ return im, r, (dw, dh)
56
+
57
+
58
+ def mixup(im, labels, im2, labels2):
59
+ # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
60
+ r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
61
+ im = (im * r + im2 * (1 - r)).astype(np.uint8)
62
+ labels = np.concatenate((labels, labels2), 0)
63
+ return im, labels
64
+
65
+
66
+ def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
67
+ # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
68
+ w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
69
+ w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
70
+ ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
71
+ return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
72
+
73
+
74
+ def random_affine(img, labels=(), degrees=10, translate=.1, scale=.1, shear=10,
75
+ new_shape=(640,640)):
76
+
77
+ n = len(labels)
78
+ height,width = new_shape
79
+
80
+ M,s = get_transform_matrix(img.shape[:2],(height,width),degrees,scale,shear,translate)
81
+ if (M != np.eye(3)).any(): # image changed
82
+ img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
83
+
84
+ # Transform label coordinates
85
+ if n:
86
+ new = np.zeros((n, 4))
87
+
88
+ xy = np.ones((n * 4, 3))
89
+ xy[:, :2] = labels[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
90
+ xy = xy @ M.T # transform
91
+ xy = xy[:, :2].reshape(n, 8) # perspective rescale or affine
92
+
93
+ # create new boxes
94
+ x = xy[:, [0, 2, 4, 6]]
95
+ y = xy[:, [1, 3, 5, 7]]
96
+ new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
97
+
98
+ # clip
99
+ new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
100
+ new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
101
+
102
+ # filter candidates
103
+ i = box_candidates(box1=labels[:, 1:5].T * s, box2=new.T, area_thr=0.1)
104
+ labels = labels[i]
105
+ labels[:, 1:5] = new[i]
106
+
107
+ return img, labels
108
+
109
+
110
+ def get_transform_matrix(img_shape,new_shape,degrees,scale,shear,translate):
111
+ new_height,new_width = new_shape
112
+ # Center
113
+ C = np.eye(3)
114
+ C[0, 2] = -img_shape[1] / 2 # x translation (pixels)
115
+ C[1, 2] = -img_shape[0] / 2 # y translation (pixels)
116
+
117
+ # Rotation and Scale
118
+ R = np.eye(3)
119
+ a = random.uniform(-degrees, degrees)
120
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
121
+ s = random.uniform(1 - scale, 1 + scale)
122
+ # s = 2 ** random.uniform(-scale, scale)
123
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
124
+
125
+ # Shear
126
+ S = np.eye(3)
127
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
128
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
129
+
130
+ # Translation
131
+ T = np.eye(3)
132
+ T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * new_width # x translation (pixels)
133
+ T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * new_height # y transla ion (pixels)
134
+
135
+ # Combined rotation matrix
136
+ M = T @ S @ R @ C # order of operations (right to left) is IMPORTANT
137
+ return M,s
138
+
139
+
140
+ def mosaic_augmentation(img_size, imgs, hs, ws, labels, hyp):
141
+
142
+ assert len(imgs)==4, "Mosaic augmentaion of current version only supports 4 images."
143
+
144
+ labels4 = []
145
+ s = img_size
146
+ yc, xc = (int(random.uniform(s//2, 3*s//2)) for _ in range(2)) # mosaic center x, y
147
+ for i in range(len(imgs)):
148
+ # Load image
149
+ img, h, w = imgs[i],hs[i],ws[i]
150
+ # place img in img4
151
+ if i == 0: # top left
152
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
153
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
154
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
155
+ elif i == 1: # top right
156
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
157
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
158
+ elif i == 2: # bottom left
159
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
160
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
161
+ elif i == 3: # bottom right
162
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
163
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
164
+
165
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
166
+ padw = x1a - x1b
167
+ padh = y1a - y1b
168
+
169
+ # Labels
170
+ labels_per_img= labels[i].copy()
171
+ if labels_per_img.size:
172
+ boxes = np.copy(labels_per_img[:,1:])
173
+ boxes[:, 0] = w * (labels_per_img[:, 1] - labels_per_img[:, 3] / 2) + padw # top left x
174
+ boxes[:, 1] = h * (labels_per_img[:, 2] - labels_per_img[:, 4] / 2) + padh # top left y
175
+ boxes[:, 2] = w * (labels_per_img[:, 1] + labels_per_img[:, 3] / 2) + padw # bottom right x
176
+ boxes[:, 3] = h * (labels_per_img[:, 2] + labels_per_img[:, 4] / 2) + padh # bottom right y
177
+ labels_per_img[:,1:] = boxes
178
+
179
+ labels4.append(labels_per_img)
180
+
181
+ # Concat/clip labels
182
+ labels4 = np.concatenate(labels4, 0)
183
+ for x in (labels4[:, 1:]):
184
+ np.clip(x, 0, 2 * s, out=x)
185
+
186
+ # Augment
187
+ img4, labels4 = random_affine(img4, labels4,
188
+ degrees=hyp['degrees'],
189
+ translate=hyp['translate'],
190
+ scale=hyp['scale'],
191
+ shear=hyp['shear'])
192
+
193
+ return img4, labels4
yolov6/data/data_load.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ # This code is based on
4
+ # https://github.com/ultralytics/yolov5/blob/master/utils/dataloaders.py
5
+
6
+ import os
7
+ from torch.utils.data import dataloader, distributed
8
+
9
+ from .datasets import TrainValDataset
10
+ from yolov6.utils.events import LOGGER
11
+ from yolov6.utils.torch_utils import torch_distributed_zero_first
12
+
13
+
14
+ def create_dataloader(path, img_size, batch_size, stride, hyp=None, augment=False, check_images=False, check_labels=False, pad=0.0, rect=False, rank=-1, workers=8, shuffle=False,class_names=None, task='Train'):
15
+ '''Create general dataloader.
16
+
17
+ Returns dataloader and dataset
18
+ '''
19
+ if rect and shuffle:
20
+ LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False')
21
+ shuffle = False
22
+ with torch_distributed_zero_first(rank):
23
+ dataset = TrainValDataset(path, img_size, batch_size,
24
+ augment=augment,
25
+ hyp=hyp,
26
+ rect=rect,
27
+ check_images=check_images,
28
+ stride=int(stride),
29
+ pad=pad,
30
+ rank=rank,
31
+ class_names=class_names,
32
+ task=task)
33
+
34
+ batch_size = min(batch_size, len(dataset))
35
+ workers = min([os.cpu_count() // int(os.getenv('WORLD_SIZE', 1)), batch_size if batch_size > 1 else 0, workers]) # number of workers
36
+ sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
37
+ return TrainValDataLoader(dataset,
38
+ batch_size=batch_size,
39
+ shuffle=shuffle and sampler is None,
40
+ num_workers=workers,
41
+ sampler=sampler,
42
+ pin_memory=True,
43
+ collate_fn=TrainValDataset.collate_fn), dataset
44
+
45
+
46
+ class TrainValDataLoader(dataloader.DataLoader):
47
+ """ Dataloader that reuses workers
48
+
49
+ Uses same syntax as vanilla DataLoader
50
+ """
51
+
52
+ def __init__(self, *args, **kwargs):
53
+ super().__init__(*args, **kwargs)
54
+ object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
55
+ self.iterator = super().__iter__()
56
+
57
+ def __len__(self):
58
+ return len(self.batch_sampler.sampler)
59
+
60
+ def __iter__(self):
61
+ for i in range(len(self)):
62
+ yield next(self.iterator)
63
+
64
+
65
+ class _RepeatSampler:
66
+ """ Sampler that repeats forever
67
+
68
+ Args:
69
+ sampler (Sampler)
70
+ """
71
+
72
+ def __init__(self, sampler):
73
+ self.sampler = sampler
74
+
75
+ def __iter__(self):
76
+ while True:
77
+ yield from iter(self.sampler)
yolov6/data/datasets.py ADDED
@@ -0,0 +1,533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+
4
+ import glob
5
+ import os
6
+ import os.path as osp
7
+ import random
8
+ import json
9
+ import time
10
+
11
+ from multiprocessing.pool import Pool
12
+
13
+ import cv2
14
+ import numpy as np
15
+ import torch
16
+ from PIL import ExifTags, Image, ImageOps
17
+ from torch.utils.data import Dataset
18
+ from tqdm import tqdm
19
+ from pathlib import Path
20
+
21
+ from .data_augment import (
22
+ augment_hsv,
23
+ letterbox,
24
+ mixup,
25
+ random_affine,
26
+ mosaic_augmentation,
27
+ )
28
+ from yolov6.utils.events import LOGGER
29
+
30
+ # Parameters
31
+ IMG_FORMATS = ["bmp", "jpg", "jpeg", "png", "tif", "tiff", "dng", "webp", "mpo"]
32
+ # Get orientation exif tag
33
+ for k, v in ExifTags.TAGS.items():
34
+ if v == "Orientation":
35
+ ORIENTATION = k
36
+ break
37
+
38
+
39
+ class TrainValDataset(Dataset):
40
+ # YOLOv6 train_loader/val_loader, loads images and labels for training and validation
41
+ def __init__(
42
+ self,
43
+ img_dir,
44
+ img_size=640,
45
+ batch_size=16,
46
+ augment=False,
47
+ hyp=None,
48
+ rect=False,
49
+ check_images=False,
50
+ check_labels=False,
51
+ stride=32,
52
+ pad=0.0,
53
+ rank=-1,
54
+ class_names=None,
55
+ task="train",
56
+ ):
57
+ assert task.lower() in ("train", "val", "speed"), f"Not supported task: {task}"
58
+ t1 = time.time()
59
+ self.__dict__.update(locals())
60
+ self.main_process = self.rank in (-1, 0)
61
+ self.task = self.task.capitalize()
62
+ self.img_paths, self.labels = self.get_imgs_labels(self.img_dir)
63
+ if self.rect:
64
+ shapes = [self.img_info[p]["shape"] for p in self.img_paths]
65
+ self.shapes = np.array(shapes, dtype=np.float64)
66
+ self.batch_indices = np.floor(
67
+ np.arange(len(shapes)) / self.batch_size
68
+ ).astype(
69
+ np.int
70
+ ) # batch indices of each image
71
+ self.sort_files_shapes()
72
+ t2 = time.time()
73
+ if self.main_process:
74
+ LOGGER.info(f"%.1fs for dataset initialization." % (t2 - t1))
75
+
76
+ def __len__(self):
77
+ """Get the length of dataset"""
78
+ return len(self.img_paths)
79
+
80
+ def __getitem__(self, index):
81
+ """Fetching a data sample for a given key.
82
+ This function applies mosaic and mixup augments during training.
83
+ During validation, letterbox augment is applied.
84
+ """
85
+ # Mosaic Augmentation
86
+ if self.augment and random.random() < self.hyp["mosaic"]:
87
+ img, labels = self.get_mosaic(index)
88
+ shapes = None
89
+
90
+ # MixUp augmentation
91
+ if random.random() < self.hyp["mixup"]:
92
+ img_other, labels_other = self.get_mosaic(
93
+ random.randint(0, len(self.img_paths) - 1)
94
+ )
95
+ img, labels = mixup(img, labels, img_other, labels_other)
96
+
97
+ else:
98
+ # Load image
99
+ img, (h0, w0), (h, w) = self.load_image(index)
100
+
101
+ # Letterbox
102
+ shape = (
103
+ self.batch_shapes[self.batch_indices[index]]
104
+ if self.rect
105
+ else self.img_size
106
+ ) # final letterboxed shape
107
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
108
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
109
+
110
+ labels = self.labels[index].copy()
111
+ if labels.size:
112
+ w *= ratio
113
+ h *= ratio
114
+ # new boxes
115
+ boxes = np.copy(labels[:, 1:])
116
+ boxes[:, 0] = (
117
+ w * (labels[:, 1] - labels[:, 3] / 2) + pad[0]
118
+ ) # top left x
119
+ boxes[:, 1] = (
120
+ h * (labels[:, 2] - labels[:, 4] / 2) + pad[1]
121
+ ) # top left y
122
+ boxes[:, 2] = (
123
+ w * (labels[:, 1] + labels[:, 3] / 2) + pad[0]
124
+ ) # bottom right x
125
+ boxes[:, 3] = (
126
+ h * (labels[:, 2] + labels[:, 4] / 2) + pad[1]
127
+ ) # bottom right y
128
+ labels[:, 1:] = boxes
129
+
130
+ if self.augment:
131
+ img, labels = random_affine(
132
+ img,
133
+ labels,
134
+ degrees=self.hyp["degrees"],
135
+ translate=self.hyp["translate"],
136
+ scale=self.hyp["scale"],
137
+ shear=self.hyp["shear"],
138
+ new_shape=(self.img_size, self.img_size),
139
+ )
140
+
141
+ if len(labels):
142
+ h, w = img.shape[:2]
143
+
144
+ labels[:, [1, 3]] = labels[:, [1, 3]].clip(0, w - 1e-3) # x1, x2
145
+ labels[:, [2, 4]] = labels[:, [2, 4]].clip(0, h - 1e-3) # y1, y2
146
+
147
+ boxes = np.copy(labels[:, 1:])
148
+ boxes[:, 0] = ((labels[:, 1] + labels[:, 3]) / 2) / w # x center
149
+ boxes[:, 1] = ((labels[:, 2] + labels[:, 4]) / 2) / h # y center
150
+ boxes[:, 2] = (labels[:, 3] - labels[:, 1]) / w # width
151
+ boxes[:, 3] = (labels[:, 4] - labels[:, 2]) / h # height
152
+ labels[:, 1:] = boxes
153
+
154
+ if self.augment:
155
+ img, labels = self.general_augment(img, labels)
156
+
157
+ labels_out = torch.zeros((len(labels), 6))
158
+ if len(labels):
159
+ labels_out[:, 1:] = torch.from_numpy(labels)
160
+
161
+ # Convert
162
+ img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
163
+ img = np.ascontiguousarray(img)
164
+
165
+ return torch.from_numpy(img), labels_out, self.img_paths[index], shapes
166
+
167
+ def load_image(self, index):
168
+ """Load image.
169
+ This function loads image by cv2, resize original image to target shape(img_size) with keeping ratio.
170
+
171
+ Returns:
172
+ Image, original shape of image, resized image shape
173
+ """
174
+ path = self.img_paths[index]
175
+ im = cv2.imread(path)
176
+ assert im is not None, f"Image Not Found {path}, workdir: {os.getcwd()}"
177
+
178
+ h0, w0 = im.shape[:2] # origin shape
179
+ r = self.img_size / max(h0, w0)
180
+ if r != 1:
181
+ im = cv2.resize(
182
+ im,
183
+ (int(w0 * r), int(h0 * r)),
184
+ interpolation=cv2.INTER_AREA
185
+ if r < 1 and not self.augment
186
+ else cv2.INTER_LINEAR,
187
+ )
188
+ return im, (h0, w0), im.shape[:2]
189
+
190
+ @staticmethod
191
+ def collate_fn(batch):
192
+ """Merges a list of samples to form a mini-batch of Tensor(s)"""
193
+ img, label, path, shapes = zip(*batch)
194
+ for i, l in enumerate(label):
195
+ l[:, 0] = i # add target image index for build_targets()
196
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
197
+
198
+ def get_imgs_labels(self, img_dir):
199
+
200
+ assert osp.exists(img_dir), f"{img_dir} is an invalid directory path!"
201
+ valid_img_record = osp.join(
202
+ osp.dirname(img_dir), "." + osp.basename(img_dir) + ".json"
203
+ )
204
+ img_info = {}
205
+ NUM_THREADS = min(8, os.cpu_count())
206
+ # check images
207
+ if (
208
+ self.check_images or not osp.exists(valid_img_record)
209
+ ) and self.main_process:
210
+ img_paths = glob.glob(osp.join(img_dir, "*"), recursive=True)
211
+ img_paths = sorted(
212
+ p for p in img_paths if p.split(".")[-1].lower() in IMG_FORMATS
213
+ )
214
+ assert img_paths, f"No images found in {img_dir}."
215
+
216
+ nc, msgs = 0, [] # number corrupt, messages
217
+ LOGGER.info(
218
+ f"{self.task}: Checking formats of images with {NUM_THREADS} process(es): "
219
+ )
220
+ with Pool(NUM_THREADS) as pool:
221
+ pbar = tqdm(
222
+ pool.imap(TrainValDataset.check_image, img_paths),
223
+ total=len(img_paths),
224
+ )
225
+ for img_path, shape_per_img, nc_per_img, msg in pbar:
226
+ if nc_per_img == 0: # not corrupted
227
+ img_info[img_path] = {"shape": shape_per_img}
228
+ nc += nc_per_img
229
+ if msg:
230
+ msgs.append(msg)
231
+ pbar.desc = f"{nc} image(s) corrupted"
232
+ pbar.close()
233
+ if msgs:
234
+ LOGGER.info("\n".join(msgs))
235
+
236
+ # save valid image paths.
237
+ with open(valid_img_record, "w") as f:
238
+ json.dump(img_info, f)
239
+
240
+ # check and load anns
241
+ label_dir = osp.join(
242
+ osp.dirname(osp.dirname(img_dir)), "labels", osp.basename(img_dir)
243
+ )
244
+ assert osp.exists(label_dir), f"{label_dir} is an invalid directory path!"
245
+ if not img_info:
246
+ with open(valid_img_record, "r") as f:
247
+ img_info = json.load(f)
248
+ assert (
249
+ img_info
250
+ ), "No information in record files, please add option --check_images."
251
+ img_paths = list(img_info.keys())
252
+ label_paths = [
253
+ osp.join(label_dir, osp.basename(p).split(".")[0] + ".txt")
254
+ for p in img_paths
255
+ ]
256
+ if (
257
+ self.check_labels or "labels" not in img_info[img_paths[0]]
258
+ ): # key 'labels' not saved in img_info
259
+ nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number corrupt, messages
260
+ LOGGER.info(
261
+ f"{self.task}: Checking formats of labels with {NUM_THREADS} process(es): "
262
+ )
263
+ with Pool(NUM_THREADS) as pool:
264
+ pbar = pool.imap(
265
+ TrainValDataset.check_label_files, zip(img_paths, label_paths)
266
+ )
267
+ pbar = tqdm(pbar, total=len(label_paths)) if self.main_process else pbar
268
+ for (
269
+ img_path,
270
+ labels_per_file,
271
+ nc_per_file,
272
+ nm_per_file,
273
+ nf_per_file,
274
+ ne_per_file,
275
+ msg,
276
+ ) in pbar:
277
+ if img_path:
278
+ img_info[img_path]["labels"] = labels_per_file
279
+ else:
280
+ img_info.pop(img_path)
281
+ nc += nc_per_file
282
+ nm += nm_per_file
283
+ nf += nf_per_file
284
+ ne += ne_per_file
285
+ if msg:
286
+ msgs.append(msg)
287
+ if self.main_process:
288
+ pbar.desc = f"{nf} label(s) found, {nm} label(s) missing, {ne} label(s) empty, {nc} invalid label files"
289
+ if self.main_process:
290
+ pbar.close()
291
+ with open(valid_img_record, "w") as f:
292
+ json.dump(img_info, f)
293
+ if msgs:
294
+ LOGGER.info("\n".join(msgs))
295
+ if nf == 0:
296
+ LOGGER.warning(
297
+ f"WARNING: No labels found in {osp.dirname(self.img_paths[0])}. "
298
+ )
299
+ else:
300
+ with open(valid_img_record) as f:
301
+ img_info = json.load(f)
302
+ if self.task.lower() == "val":
303
+ assert (
304
+ self.class_names
305
+ ), "Class names is required when converting labels to coco format for evaluating."
306
+ save_dir = osp.join(osp.dirname(osp.dirname(img_dir)), "annotations")
307
+ if not osp.exists(save_dir):
308
+ os.mkdir(save_dir)
309
+ save_path = osp.join(
310
+ save_dir, "instances_" + osp.basename(img_dir) + ".json"
311
+ )
312
+ if not osp.exists(save_path):
313
+ TrainValDataset.generate_coco_format_labels(
314
+ img_info, self.class_names, save_path
315
+ )
316
+
317
+ img_paths, labels = list(
318
+ zip(
319
+ *[
320
+ (
321
+ img_path,
322
+ np.array(info["labels"], dtype=np.float32)
323
+ if info["labels"]
324
+ else np.zeros((0, 5), dtype=np.float32),
325
+ )
326
+ for img_path, info in img_info.items()
327
+ ]
328
+ )
329
+ )
330
+ self.img_info = img_info
331
+ LOGGER.info(
332
+ f"{self.task}: Final numbers of valid images: {len(img_paths)}/ labels: {len(labels)}. "
333
+ )
334
+ return img_paths, labels
335
+
336
+ def get_mosaic(self, index):
337
+ """Gets images and labels after mosaic augments"""
338
+ indices = [index] + random.choices(
339
+ range(0, len(self.img_paths)), k=3
340
+ ) # 3 additional image indices
341
+ random.shuffle(indices)
342
+ imgs, hs, ws, labels = [], [], [], []
343
+ for index in indices:
344
+ img, _, (h, w) = self.load_image(index)
345
+ labels_per_img = self.labels[index]
346
+ imgs.append(img)
347
+ hs.append(h)
348
+ ws.append(w)
349
+ labels.append(labels_per_img)
350
+ img, labels = mosaic_augmentation(self.img_size, imgs, hs, ws, labels, self.hyp)
351
+ return img, labels
352
+
353
+ def general_augment(self, img, labels):
354
+ """Gets images and labels after general augment
355
+ This function applies hsv, random ud-flip and random lr-flips augments.
356
+ """
357
+ nl = len(labels)
358
+
359
+ # HSV color-space
360
+ augment_hsv(
361
+ img,
362
+ hgain=self.hyp["hsv_h"],
363
+ sgain=self.hyp["hsv_s"],
364
+ vgain=self.hyp["hsv_v"],
365
+ )
366
+
367
+ # Flip up-down
368
+ if random.random() < self.hyp["flipud"]:
369
+ img = np.flipud(img)
370
+ if nl:
371
+ labels[:, 2] = 1 - labels[:, 2]
372
+
373
+ # Flip left-right
374
+ if random.random() < self.hyp["fliplr"]:
375
+ img = np.fliplr(img)
376
+ if nl:
377
+ labels[:, 1] = 1 - labels[:, 1]
378
+
379
+ return img, labels
380
+
381
+ def sort_files_shapes(self):
382
+ # Sort by aspect ratio
383
+ batch_num = self.batch_indices[-1] + 1
384
+ s = self.shapes # wh
385
+ ar = s[:, 1] / s[:, 0] # aspect ratio
386
+ irect = ar.argsort()
387
+ self.img_paths = [self.img_paths[i] for i in irect]
388
+ self.labels = [self.labels[i] for i in irect]
389
+ self.shapes = s[irect] # wh
390
+ ar = ar[irect]
391
+
392
+ # Set training image shapes
393
+ shapes = [[1, 1]] * batch_num
394
+ for i in range(batch_num):
395
+ ari = ar[self.batch_indices == i]
396
+ mini, maxi = ari.min(), ari.max()
397
+ if maxi < 1:
398
+ shapes[i] = [maxi, 1]
399
+ elif mini > 1:
400
+ shapes[i] = [1, 1 / mini]
401
+ self.batch_shapes = (
402
+ np.ceil(np.array(shapes) * self.img_size / self.stride + self.pad).astype(
403
+ np.int
404
+ )
405
+ * self.stride
406
+ )
407
+
408
+ @staticmethod
409
+ def check_image(im_file):
410
+ # verify an image.
411
+ nc, msg = 0, ""
412
+ try:
413
+ im = Image.open(im_file)
414
+ im.verify() # PIL verify
415
+ shape = im.size # (width, height)
416
+ im_exif = im._getexif()
417
+ if im_exif and ORIENTATION in im_exif:
418
+ rotation = im_exif[ORIENTATION]
419
+ if rotation in (6, 8):
420
+ shape = (shape[1], shape[0])
421
+
422
+ assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
423
+ assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
424
+ if im.format.lower() in ("jpg", "jpeg"):
425
+ with open(im_file, "rb") as f:
426
+ f.seek(-2, 2)
427
+ if f.read() != b"\xff\xd9": # corrupt JPEG
428
+ ImageOps.exif_transpose(Image.open(im_file)).save(
429
+ im_file, "JPEG", subsampling=0, quality=100
430
+ )
431
+ msg += f"WARNING: {im_file}: corrupt JPEG restored and saved"
432
+ return im_file, shape, nc, msg
433
+ except Exception as e:
434
+ nc = 1
435
+ msg = f"WARNING: {im_file}: ignoring corrupt image: {e}"
436
+ return im_file, None, nc, msg
437
+
438
+ @staticmethod
439
+ def check_label_files(args):
440
+ img_path, lb_path = args
441
+ nm, nf, ne, nc, msg = 0, 0, 0, 0, "" # number (missing, found, empty, message
442
+ try:
443
+ if osp.exists(lb_path):
444
+ nf = 1 # label found
445
+ with open(lb_path, "r") as f:
446
+ labels = [
447
+ x.split() for x in f.read().strip().splitlines() if len(x)
448
+ ]
449
+ labels = np.array(labels, dtype=np.float32)
450
+ if len(labels):
451
+ assert all(
452
+ len(l) == 5 for l in labels
453
+ ), f"{lb_path}: wrong label format."
454
+ assert (
455
+ labels >= 0
456
+ ).all(), f"{lb_path}: Label values error: all values in label file must > 0"
457
+ assert (
458
+ labels[:, 1:] <= 1
459
+ ).all(), f"{lb_path}: Label values error: all coordinates must be normalized"
460
+
461
+ _, indices = np.unique(labels, axis=0, return_index=True)
462
+ if len(indices) < len(labels): # duplicate row check
463
+ labels = labels[indices] # remove duplicates
464
+ msg += f"WARNING: {lb_path}: {len(labels) - len(indices)} duplicate labels removed"
465
+ labels = labels.tolist()
466
+ else:
467
+ ne = 1 # label empty
468
+ labels = []
469
+ else:
470
+ nm = 1 # label missing
471
+ labels = []
472
+
473
+ return img_path, labels, nc, nm, nf, ne, msg
474
+ except Exception as e:
475
+ nc = 1
476
+ msg = f"WARNING: {lb_path}: ignoring invalid labels: {e}"
477
+ return None, None, nc, nm, nf, ne, msg
478
+
479
+ @staticmethod
480
+ def generate_coco_format_labels(img_info, class_names, save_path):
481
+ # for evaluation with pycocotools
482
+ dataset = {"categories": [], "annotations": [], "images": []}
483
+ for i, class_name in enumerate(class_names):
484
+ dataset["categories"].append(
485
+ {"id": i, "name": class_name, "supercategory": ""}
486
+ )
487
+
488
+ ann_id = 0
489
+ LOGGER.info(f"Convert to COCO format")
490
+ for i, (img_path, info) in enumerate(tqdm(img_info.items())):
491
+ labels = info["labels"] if info["labels"] else []
492
+ path = Path(img_path)
493
+ img_id = int(path.stem) if path.stem.isnumeric() else path.stem
494
+ img_w, img_h = info["shape"]
495
+ dataset["images"].append(
496
+ {
497
+ "file_name": os.path.basename(img_path),
498
+ "id": img_id,
499
+ "width": img_w,
500
+ "height": img_h,
501
+ }
502
+ )
503
+ if labels:
504
+ for label in labels:
505
+ c, x, y, w, h = label[:5]
506
+ # convert x,y,w,h to x1,y1,x2,y2
507
+ x1 = (x - w / 2) * img_w
508
+ y1 = (y - h / 2) * img_h
509
+ x2 = (x + w / 2) * img_w
510
+ y2 = (y + h / 2) * img_h
511
+ # cls_id starts from 0
512
+ cls_id = int(c)
513
+ w = max(0, x2 - x1)
514
+ h = max(0, y2 - y1)
515
+ dataset["annotations"].append(
516
+ {
517
+ "area": h * w,
518
+ "bbox": [x1, y1, w, h],
519
+ "category_id": cls_id,
520
+ "id": ann_id,
521
+ "image_id": img_id,
522
+ "iscrowd": 0,
523
+ # mask
524
+ "segmentation": [],
525
+ }
526
+ )
527
+ ann_id += 1
528
+
529
+ with open(save_path, "w") as f:
530
+ json.dump(dataset, f)
531
+ LOGGER.info(
532
+ f"Convert to COCO format finished. Resutls saved in {save_path}"
533
+ )
yolov6/layers/common.py ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+
4
+ import warnings
5
+ from pathlib import Path
6
+
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+
12
+ class SiLU(nn.Module):
13
+ '''Activation of SiLU'''
14
+ @staticmethod
15
+ def forward(x):
16
+ return x * torch.sigmoid(x)
17
+
18
+
19
+ class Conv(nn.Module):
20
+ '''Normal Conv with SiLU activation'''
21
+ def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False):
22
+ super().__init__()
23
+ padding = kernel_size // 2
24
+ self.conv = nn.Conv2d(
25
+ in_channels,
26
+ out_channels,
27
+ kernel_size=kernel_size,
28
+ stride=stride,
29
+ padding=padding,
30
+ groups=groups,
31
+ bias=bias,
32
+ )
33
+ self.bn = nn.BatchNorm2d(out_channels)
34
+ self.act = nn.SiLU()
35
+
36
+ def forward(self, x):
37
+ return self.act(self.bn(self.conv(x)))
38
+
39
+ def forward_fuse(self, x):
40
+ return self.act(self.conv(x))
41
+
42
+
43
+ class SimConv(nn.Module):
44
+ '''Normal Conv with ReLU activation'''
45
+ def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False):
46
+ super().__init__()
47
+ padding = kernel_size // 2
48
+ self.conv = nn.Conv2d(
49
+ in_channels,
50
+ out_channels,
51
+ kernel_size=kernel_size,
52
+ stride=stride,
53
+ padding=padding,
54
+ groups=groups,
55
+ bias=bias,
56
+ )
57
+ self.bn = nn.BatchNorm2d(out_channels)
58
+ self.act = nn.ReLU()
59
+
60
+ def forward(self, x):
61
+ return self.act(self.bn(self.conv(x)))
62
+
63
+ def forward_fuse(self, x):
64
+ return self.act(self.conv(x))
65
+
66
+
67
+ class SimSPPF(nn.Module):
68
+ '''Simplified SPPF with ReLU activation'''
69
+ def __init__(self, in_channels, out_channels, kernel_size=5):
70
+ super().__init__()
71
+ c_ = in_channels // 2 # hidden channels
72
+ self.cv1 = SimConv(in_channels, c_, 1, 1)
73
+ self.cv2 = SimConv(c_ * 4, out_channels, 1, 1)
74
+ self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
75
+
76
+ def forward(self, x):
77
+ x = self.cv1(x)
78
+ with warnings.catch_warnings():
79
+ warnings.simplefilter('ignore')
80
+ y1 = self.m(x)
81
+ y2 = self.m(y1)
82
+ return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
83
+
84
+
85
+ class Transpose(nn.Module):
86
+ '''Normal Transpose, default for upsampling'''
87
+ def __init__(self, in_channels, out_channels, kernel_size=2, stride=2):
88
+ super().__init__()
89
+ self.upsample_transpose = torch.nn.ConvTranspose2d(
90
+ in_channels=in_channels,
91
+ out_channels=out_channels,
92
+ kernel_size=kernel_size,
93
+ stride=stride,
94
+ bias=True
95
+ )
96
+
97
+ def forward(self, x):
98
+ return self.upsample_transpose(x)
99
+
100
+
101
+ class Concat(nn.Module):
102
+ def __init__(self, dimension=1):
103
+ super().__init__()
104
+ self.d = dimension
105
+
106
+ def forward(self, x):
107
+ return torch.cat(x, self.d)
108
+
109
+
110
+ def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
111
+ '''Basic cell for rep-style block, including conv and bn'''
112
+ result = nn.Sequential()
113
+ result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
114
+ kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False))
115
+ result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
116
+ return result
117
+
118
+
119
+ class RepBlock(nn.Module):
120
+ '''
121
+ RepBlock is a stage block with rep-style basic block
122
+ '''
123
+ def __init__(self, in_channels, out_channels, n=1):
124
+ super().__init__()
125
+ self.conv1 = RepVGGBlock(in_channels, out_channels)
126
+ self.block = nn.Sequential(*(RepVGGBlock(out_channels, out_channels) for _ in range(n - 1))) if n > 1 else None
127
+
128
+ def forward(self, x):
129
+ x = self.conv1(x)
130
+ if self.block is not None:
131
+ x = self.block(x)
132
+ return x
133
+
134
+
135
+ class RepVGGBlock(nn.Module):
136
+ '''RepVGGBlock is a basic rep-style block, including training and deploy status
137
+ This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
138
+ '''
139
+ def __init__(self, in_channels, out_channels, kernel_size=3,
140
+ stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
141
+ super(RepVGGBlock, self).__init__()
142
+ """ Intialization of the class.
143
+ Args:
144
+ in_channels (int): Number of channels in the input image
145
+ out_channels (int): Number of channels produced by the convolution
146
+ kernel_size (int or tuple): Size of the convolving kernel
147
+ stride (int or tuple, optional): Stride of the convolution. Default: 1
148
+ padding (int or tuple, optional): Zero-padding added to both sides of
149
+ the input. Default: 1
150
+ dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
151
+ groups (int, optional): Number of blocked connections from input
152
+ channels to output channels. Default: 1
153
+ padding_mode (string, optional): Default: 'zeros'
154
+ deploy: Whether to be deploy status or training status. Default: False
155
+ use_se: Whether to use se. Default: False
156
+ """
157
+ self.deploy = deploy
158
+ self.groups = groups
159
+ self.in_channels = in_channels
160
+ self.out_channels = out_channels
161
+
162
+ assert kernel_size == 3
163
+ assert padding == 1
164
+
165
+ padding_11 = padding - kernel_size // 2
166
+
167
+ self.nonlinearity = nn.ReLU()
168
+
169
+ if use_se:
170
+ raise NotImplementedError("se block not supported yet")
171
+ else:
172
+ self.se = nn.Identity()
173
+
174
+ if deploy:
175
+ self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
176
+ padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
177
+
178
+ else:
179
+ self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None
180
+ self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups)
181
+ self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups)
182
+
183
+ def forward(self, inputs):
184
+ '''Forward process'''
185
+ if hasattr(self, 'rbr_reparam'):
186
+ return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
187
+
188
+ if self.rbr_identity is None:
189
+ id_out = 0
190
+ else:
191
+ id_out = self.rbr_identity(inputs)
192
+
193
+ return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out))
194
+
195
+ def get_equivalent_kernel_bias(self):
196
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
197
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
198
+ kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
199
+ return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
200
+
201
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
202
+ if kernel1x1 is None:
203
+ return 0
204
+ else:
205
+ return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
206
+
207
+ def _fuse_bn_tensor(self, branch):
208
+ if branch is None:
209
+ return 0, 0
210
+ if isinstance(branch, nn.Sequential):
211
+ kernel = branch.conv.weight
212
+ running_mean = branch.bn.running_mean
213
+ running_var = branch.bn.running_var
214
+ gamma = branch.bn.weight
215
+ beta = branch.bn.bias
216
+ eps = branch.bn.eps
217
+ else:
218
+ assert isinstance(branch, nn.BatchNorm2d)
219
+ if not hasattr(self, 'id_tensor'):
220
+ input_dim = self.in_channels // self.groups
221
+ kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
222
+ for i in range(self.in_channels):
223
+ kernel_value[i, i % input_dim, 1, 1] = 1
224
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
225
+ kernel = self.id_tensor
226
+ running_mean = branch.running_mean
227
+ running_var = branch.running_var
228
+ gamma = branch.weight
229
+ beta = branch.bias
230
+ eps = branch.eps
231
+ std = (running_var + eps).sqrt()
232
+ t = (gamma / std).reshape(-1, 1, 1, 1)
233
+ return kernel * t, beta - running_mean * gamma / std
234
+
235
+ def switch_to_deploy(self):
236
+ if hasattr(self, 'rbr_reparam'):
237
+ return
238
+ kernel, bias = self.get_equivalent_kernel_bias()
239
+ self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels, out_channels=self.rbr_dense.conv.out_channels,
240
+ kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride,
241
+ padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation, groups=self.rbr_dense.conv.groups, bias=True)
242
+ self.rbr_reparam.weight.data = kernel
243
+ self.rbr_reparam.bias.data = bias
244
+ for para in self.parameters():
245
+ para.detach_()
246
+ self.__delattr__('rbr_dense')
247
+ self.__delattr__('rbr_1x1')
248
+ if hasattr(self, 'rbr_identity'):
249
+ self.__delattr__('rbr_identity')
250
+ if hasattr(self, 'id_tensor'):
251
+ self.__delattr__('id_tensor')
252
+ self.deploy = True
253
+
254
+
255
+ class DetectBackend(nn.Module):
256
+ def __init__(self, weights='yolov6s.pt', device=None, dnn=True):
257
+
258
+ super().__init__()
259
+ assert isinstance(weights, str) and Path(weights).suffix == '.pt', f'{Path(weights).suffix} format is not supported.'
260
+ from yolov6.utils.checkpoint import load_checkpoint
261
+ model = load_checkpoint(weights, map_location=device)
262
+ stride = int(model.stride.max())
263
+ self.__dict__.update(locals()) # assign all variables to self
264
+
265
+ def forward(self, im, val=False):
266
+ y = self.model(im)
267
+ if isinstance(y, np.ndarray):
268
+ y = torch.tensor(y, device=self.device)
269
+ return y
yolov6/models/efficientrep.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+ from yolov6.layers.common import RepVGGBlock, RepBlock, SimSPPF
3
+
4
+
5
+ class EfficientRep(nn.Module):
6
+ '''EfficientRep Backbone
7
+ EfficientRep is handcrafted by hardware-aware neural network design.
8
+ With rep-style struct, EfficientRep is friendly to high-computation hardware(e.g. GPU).
9
+ '''
10
+
11
+ def __init__(
12
+ self,
13
+ in_channels=3,
14
+ channels_list=None,
15
+ num_repeats=None,
16
+ ):
17
+ super().__init__()
18
+
19
+ assert channels_list is not None
20
+ assert num_repeats is not None
21
+
22
+ self.stem = RepVGGBlock(
23
+ in_channels=in_channels,
24
+ out_channels=channels_list[0],
25
+ kernel_size=3,
26
+ stride=2
27
+ )
28
+
29
+ self.ERBlock_2 = nn.Sequential(
30
+ RepVGGBlock(
31
+ in_channels=channels_list[0],
32
+ out_channels=channels_list[1],
33
+ kernel_size=3,
34
+ stride=2
35
+ ),
36
+ RepBlock(
37
+ in_channels=channels_list[1],
38
+ out_channels=channels_list[1],
39
+ n=num_repeats[1]
40
+ )
41
+ )
42
+
43
+ self.ERBlock_3 = nn.Sequential(
44
+ RepVGGBlock(
45
+ in_channels=channels_list[1],
46
+ out_channels=channels_list[2],
47
+ kernel_size=3,
48
+ stride=2
49
+ ),
50
+ RepBlock(
51
+ in_channels=channels_list[2],
52
+ out_channels=channels_list[2],
53
+ n=num_repeats[2]
54
+ )
55
+ )
56
+
57
+ self.ERBlock_4 = nn.Sequential(
58
+ RepVGGBlock(
59
+ in_channels=channels_list[2],
60
+ out_channels=channels_list[3],
61
+ kernel_size=3,
62
+ stride=2
63
+ ),
64
+ RepBlock(
65
+ in_channels=channels_list[3],
66
+ out_channels=channels_list[3],
67
+ n=num_repeats[3]
68
+ )
69
+ )
70
+
71
+ self.ERBlock_5 = nn.Sequential(
72
+ RepVGGBlock(
73
+ in_channels=channels_list[3],
74
+ out_channels=channels_list[4],
75
+ kernel_size=3,
76
+ stride=2,
77
+ ),
78
+ RepBlock(
79
+ in_channels=channels_list[4],
80
+ out_channels=channels_list[4],
81
+ n=num_repeats[4]
82
+ ),
83
+ SimSPPF(
84
+ in_channels=channels_list[4],
85
+ out_channels=channels_list[4],
86
+ kernel_size=5
87
+ )
88
+ )
89
+
90
+ def forward(self, x):
91
+
92
+ outputs = []
93
+ x = self.stem(x)
94
+ x = self.ERBlock_2(x)
95
+ x = self.ERBlock_3(x)
96
+ outputs.append(x)
97
+ x = self.ERBlock_4(x)
98
+ outputs.append(x)
99
+ x = self.ERBlock_5(x)
100
+ outputs.append(x)
101
+
102
+ return tuple(outputs)
yolov6/models/effidehead.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import math
4
+ from yolov6.layers.common import *
5
+
6
+
7
+ class Detect(nn.Module):
8
+ '''Efficient Decoupled Head
9
+ With hardware-aware degisn, the decoupled head is optimized with
10
+ hybridchannels methods.
11
+ '''
12
+ def __init__(self, num_classes=80, anchors=1, num_layers=3, inplace=True, head_layers=None): # detection layer
13
+ super().__init__()
14
+ assert head_layers is not None
15
+ self.nc = num_classes # number of classes
16
+ self.no = num_classes + 5 # number of outputs per anchor
17
+ self.nl = num_layers # number of detection layers
18
+ if isinstance(anchors, (list, tuple)):
19
+ self.na = len(anchors[0]) // 2
20
+ else:
21
+ self.na = anchors
22
+ self.anchors = anchors
23
+ self.grid = [torch.zeros(1)] * num_layers
24
+ self.prior_prob = 1e-2
25
+ self.inplace = inplace
26
+ stride = [8, 16, 32] # strides computed during build
27
+ self.stride = torch.tensor(stride)
28
+
29
+ # Init decouple head
30
+ self.cls_convs = nn.ModuleList()
31
+ self.reg_convs = nn.ModuleList()
32
+ self.cls_preds = nn.ModuleList()
33
+ self.reg_preds = nn.ModuleList()
34
+ self.obj_preds = nn.ModuleList()
35
+ self.stems = nn.ModuleList()
36
+
37
+ # Efficient decoupled head layers
38
+ for i in range(num_layers):
39
+ idx = i*6
40
+ self.stems.append(head_layers[idx])
41
+ self.cls_convs.append(head_layers[idx+1])
42
+ self.reg_convs.append(head_layers[idx+2])
43
+ self.cls_preds.append(head_layers[idx+3])
44
+ self.reg_preds.append(head_layers[idx+4])
45
+ self.obj_preds.append(head_layers[idx+5])
46
+
47
+ def initialize_biases(self):
48
+ for conv in self.cls_preds:
49
+ b = conv.bias.view(self.na, -1)
50
+ b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
51
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
52
+ for conv in self.obj_preds:
53
+ b = conv.bias.view(self.na, -1)
54
+ b.data.fill_(-math.log((1 - self.prior_prob) / self.prior_prob))
55
+ conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
56
+
57
+ def forward(self, x):
58
+ z = []
59
+ for i in range(self.nl):
60
+ x[i] = self.stems[i](x[i])
61
+ cls_x = x[i]
62
+ reg_x = x[i]
63
+ cls_feat = self.cls_convs[i](cls_x)
64
+ cls_output = self.cls_preds[i](cls_feat)
65
+ reg_feat = self.reg_convs[i](reg_x)
66
+ reg_output = self.reg_preds[i](reg_feat)
67
+ obj_output = self.obj_preds[i](reg_feat)
68
+ if self.training:
69
+ x[i] = torch.cat([reg_output, obj_output, cls_output], 1)
70
+ bs, _, ny, nx = x[i].shape
71
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
72
+ else:
73
+ y = torch.cat([reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1)
74
+ bs, _, ny, nx = y.shape
75
+ y = y.view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
76
+ if self.grid[i].shape[2:4] != y.shape[2:4]:
77
+ d = self.stride.device
78
+ yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
79
+ self.grid[i] = torch.stack((xv, yv), 2).view(1, self.na, ny, nx, 2).float()
80
+ if self.inplace:
81
+ y[..., 0:2] = (y[..., 0:2] + self.grid[i]) * self.stride[i] # xy
82
+ y[..., 2:4] = torch.exp(y[..., 2:4]) * self.stride[i] # wh
83
+ else:
84
+ xy = (y[..., 0:2] + self.grid[i]) * self.stride[i] # xy
85
+ wh = torch.exp(y[..., 2:4]) * self.stride[i] # wh
86
+ y = torch.cat((xy, wh, y[..., 4:]), -1)
87
+ z.append(y.view(bs, -1, self.no))
88
+ return x if self.training else torch.cat(z, 1)
89
+
90
+
91
+ def build_effidehead_layer(channels_list, num_anchors, num_classes):
92
+ head_layers = nn.Sequential(
93
+ # stem0
94
+ Conv(
95
+ in_channels=channels_list[6],
96
+ out_channels=channels_list[6],
97
+ kernel_size=1,
98
+ stride=1
99
+ ),
100
+ # cls_conv0
101
+ Conv(
102
+ in_channels=channels_list[6],
103
+ out_channels=channels_list[6],
104
+ kernel_size=3,
105
+ stride=1
106
+ ),
107
+ # reg_conv0
108
+ Conv(
109
+ in_channels=channels_list[6],
110
+ out_channels=channels_list[6],
111
+ kernel_size=3,
112
+ stride=1
113
+ ),
114
+ # cls_pred0
115
+ nn.Conv2d(
116
+ in_channels=channels_list[6],
117
+ out_channels=num_classes * num_anchors,
118
+ kernel_size=1
119
+ ),
120
+ # reg_pred0
121
+ nn.Conv2d(
122
+ in_channels=channels_list[6],
123
+ out_channels=4 * num_anchors,
124
+ kernel_size=1
125
+ ),
126
+ # obj_pred0
127
+ nn.Conv2d(
128
+ in_channels=channels_list[6],
129
+ out_channels=1 * num_anchors,
130
+ kernel_size=1
131
+ ),
132
+ # stem1
133
+ Conv(
134
+ in_channels=channels_list[8],
135
+ out_channels=channels_list[8],
136
+ kernel_size=1,
137
+ stride=1
138
+ ),
139
+ # cls_conv1
140
+ Conv(
141
+ in_channels=channels_list[8],
142
+ out_channels=channels_list[8],
143
+ kernel_size=3,
144
+ stride=1
145
+ ),
146
+ # reg_conv1
147
+ Conv(
148
+ in_channels=channels_list[8],
149
+ out_channels=channels_list[8],
150
+ kernel_size=3,
151
+ stride=1
152
+ ),
153
+ # cls_pred1
154
+ nn.Conv2d(
155
+ in_channels=channels_list[8],
156
+ out_channels=num_classes * num_anchors,
157
+ kernel_size=1
158
+ ),
159
+ # reg_pred1
160
+ nn.Conv2d(
161
+ in_channels=channels_list[8],
162
+ out_channels=4 * num_anchors,
163
+ kernel_size=1
164
+ ),
165
+ # obj_pred1
166
+ nn.Conv2d(
167
+ in_channels=channels_list[8],
168
+ out_channels=1 * num_anchors,
169
+ kernel_size=1
170
+ ),
171
+ # stem2
172
+ Conv(
173
+ in_channels=channels_list[10],
174
+ out_channels=channels_list[10],
175
+ kernel_size=1,
176
+ stride=1
177
+ ),
178
+ # cls_conv2
179
+ Conv(
180
+ in_channels=channels_list[10],
181
+ out_channels=channels_list[10],
182
+ kernel_size=3,
183
+ stride=1
184
+ ),
185
+ # reg_conv2
186
+ Conv(
187
+ in_channels=channels_list[10],
188
+ out_channels=channels_list[10],
189
+ kernel_size=3,
190
+ stride=1
191
+ ),
192
+ # cls_pred2
193
+ nn.Conv2d(
194
+ in_channels=channels_list[10],
195
+ out_channels=num_classes * num_anchors,
196
+ kernel_size=1
197
+ ),
198
+ # reg_pred2
199
+ nn.Conv2d(
200
+ in_channels=channels_list[10],
201
+ out_channels=4 * num_anchors,
202
+ kernel_size=1
203
+ ),
204
+ # obj_pred2
205
+ nn.Conv2d(
206
+ in_channels=channels_list[10],
207
+ out_channels=1 * num_anchors,
208
+ kernel_size=1
209
+ )
210
+ )
211
+ return head_layers
yolov6/models/loss.py ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+
4
+ # The code is based on
5
+ # https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/models/yolo_head.py
6
+ # Copyright (c) Megvii, Inc. and its affiliates.
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import numpy as np
11
+ import torch.nn.functional as F
12
+ from yolov6.utils.figure_iou import IOUloss, pairwise_bbox_iou
13
+
14
+
15
+ class ComputeLoss:
16
+ '''Loss computation func.
17
+ This func contains SimOTA and siou loss.
18
+ '''
19
+ def __init__(self,
20
+ reg_weight=5.0,
21
+ iou_weight=3.0,
22
+ cls_weight=1.0,
23
+ center_radius=2.5,
24
+ eps=1e-7,
25
+ in_channels=[256, 512, 1024],
26
+ strides=[8, 16, 32],
27
+ n_anchors=1,
28
+ iou_type='ciou'
29
+ ):
30
+
31
+ self.reg_weight = reg_weight
32
+ self.iou_weight = iou_weight
33
+ self.cls_weight = cls_weight
34
+
35
+ self.center_radius = center_radius
36
+ self.eps = eps
37
+ self.n_anchors = n_anchors
38
+ self.strides = strides
39
+ self.grids = [torch.zeros(1)] * len(in_channels)
40
+
41
+ # Define criteria
42
+ self.l1_loss = nn.L1Loss(reduction="none")
43
+ self.bcewithlog_loss = nn.BCEWithLogitsLoss(reduction="none")
44
+ self.iou_loss = IOUloss(iou_type=iou_type, reduction="none")
45
+
46
+ def __call__(
47
+ self,
48
+ outputs,
49
+ targets
50
+ ):
51
+ dtype = outputs[0].type()
52
+ device = targets.device
53
+ loss_cls, loss_obj, loss_iou, loss_l1 = torch.zeros(1, device=device), torch.zeros(1, device=device), \
54
+ torch.zeros(1, device=device), torch.zeros(1, device=device)
55
+ num_classes = outputs[0].shape[-1] - 5
56
+
57
+ outputs, outputs_origin, gt_bboxes_scale, xy_shifts, expanded_strides = self.get_outputs_and_grids(
58
+ outputs, self.strides, dtype, device)
59
+
60
+ total_num_anchors = outputs.shape[1]
61
+ bbox_preds = outputs[:, :, :4] # [batch, n_anchors_all, 4]
62
+ bbox_preds_org = outputs_origin[:, :, :4] # [batch, n_anchors_all, 4]
63
+ obj_preds = outputs[:, :, 4].unsqueeze(-1) # [batch, n_anchors_all, 1]
64
+ cls_preds = outputs[:, :, 5:] # [batch, n_anchors_all, n_cls]
65
+
66
+ # targets
67
+ batch_size = bbox_preds.shape[0]
68
+ targets_list = np.zeros((batch_size, 1, 5)).tolist()
69
+ for i, item in enumerate(targets.cpu().numpy().tolist()):
70
+ targets_list[int(item[0])].append(item[1:])
71
+ max_len = max((len(l) for l in targets_list))
72
+
73
+ targets = torch.from_numpy(np.array(list(map(lambda l:l + [[-1,0,0,0,0]]*(max_len - len(l)), targets_list)))[:,1:,:]).to(targets.device)
74
+ num_targets_list = (targets.sum(dim=2) > 0).sum(dim=1) # number of objects
75
+
76
+ num_fg, num_gts = 0, 0
77
+ cls_targets, reg_targets, l1_targets, obj_targets, fg_masks = [], [], [], [], []
78
+
79
+ for batch_idx in range(batch_size):
80
+ num_gt = int(num_targets_list[batch_idx])
81
+ num_gts += num_gt
82
+ if num_gt == 0:
83
+ cls_target = outputs.new_zeros((0, num_classes))
84
+ reg_target = outputs.new_zeros((0, 4))
85
+ l1_target = outputs.new_zeros((0, 4))
86
+ obj_target = outputs.new_zeros((total_num_anchors, 1))
87
+ fg_mask = outputs.new_zeros(total_num_anchors).bool()
88
+ else:
89
+
90
+ gt_bboxes_per_image = targets[batch_idx, :num_gt, 1:5].mul_(gt_bboxes_scale)
91
+ gt_classes = targets[batch_idx, :num_gt, 0]
92
+ bboxes_preds_per_image = bbox_preds[batch_idx]
93
+ cls_preds_per_image = cls_preds[batch_idx]
94
+ obj_preds_per_image = obj_preds[batch_idx]
95
+
96
+ try:
97
+ (
98
+ gt_matched_classes,
99
+ fg_mask,
100
+ pred_ious_this_matching,
101
+ matched_gt_inds,
102
+ num_fg_img,
103
+ ) = self.get_assignments(
104
+ batch_idx,
105
+ num_gt,
106
+ total_num_anchors,
107
+ gt_bboxes_per_image,
108
+ gt_classes,
109
+ bboxes_preds_per_image,
110
+ cls_preds_per_image,
111
+ obj_preds_per_image,
112
+ expanded_strides,
113
+ xy_shifts,
114
+ num_classes
115
+ )
116
+
117
+ except RuntimeError:
118
+ print(
119
+ "OOM RuntimeError is raised due to the huge memory cost during label assignment. \
120
+ CPU mode is applied in this batch. If you want to avoid this issue, \
121
+ try to reduce the batch size or image size."
122
+ )
123
+ torch.cuda.empty_cache()
124
+ print("------------CPU Mode for This Batch-------------")
125
+
126
+ _gt_bboxes_per_image = gt_bboxes_per_image.cpu().float()
127
+ _gt_classes = gt_classes.cpu().float()
128
+ _bboxes_preds_per_image = bboxes_preds_per_image.cpu().float()
129
+ _cls_preds_per_image = cls_preds_per_image.cpu().float()
130
+ _obj_preds_per_image = obj_preds_per_image.cpu().float()
131
+
132
+ _expanded_strides = expanded_strides.cpu().float()
133
+ _xy_shifts = xy_shifts.cpu()
134
+
135
+ (
136
+ gt_matched_classes,
137
+ fg_mask,
138
+ pred_ious_this_matching,
139
+ matched_gt_inds,
140
+ num_fg_img,
141
+ ) = self.get_assignments(
142
+ batch_idx,
143
+ num_gt,
144
+ total_num_anchors,
145
+ _gt_bboxes_per_image,
146
+ _gt_classes,
147
+ _bboxes_preds_per_image,
148
+ _cls_preds_per_image,
149
+ _obj_preds_per_image,
150
+ _expanded_strides,
151
+ _xy_shifts,
152
+ num_classes
153
+ )
154
+
155
+ gt_matched_classes = gt_matched_classes.cuda()
156
+ fg_mask = fg_mask.cuda()
157
+ pred_ious_this_matching = pred_ious_this_matching.cuda()
158
+ matched_gt_inds = matched_gt_inds.cuda()
159
+
160
+ torch.cuda.empty_cache()
161
+ num_fg += num_fg_img
162
+ if num_fg_img > 0:
163
+ cls_target = F.one_hot(
164
+ gt_matched_classes.to(torch.int64), num_classes
165
+ ) * pred_ious_this_matching.unsqueeze(-1)
166
+ obj_target = fg_mask.unsqueeze(-1)
167
+ reg_target = gt_bboxes_per_image[matched_gt_inds]
168
+
169
+ l1_target = self.get_l1_target(
170
+ outputs.new_zeros((num_fg_img, 4)),
171
+ gt_bboxes_per_image[matched_gt_inds],
172
+ expanded_strides[0][fg_mask],
173
+ xy_shifts=xy_shifts[0][fg_mask],
174
+ )
175
+
176
+ cls_targets.append(cls_target)
177
+ reg_targets.append(reg_target)
178
+ obj_targets.append(obj_target)
179
+ l1_targets.append(l1_target)
180
+ fg_masks.append(fg_mask)
181
+
182
+ cls_targets = torch.cat(cls_targets, 0)
183
+ reg_targets = torch.cat(reg_targets, 0)
184
+ obj_targets = torch.cat(obj_targets, 0)
185
+ l1_targets = torch.cat(l1_targets, 0)
186
+ fg_masks = torch.cat(fg_masks, 0)
187
+
188
+ num_fg = max(num_fg, 1)
189
+ # loss
190
+ loss_iou += (self.iou_loss(bbox_preds.view(-1, 4)[fg_masks].T, reg_targets)).sum() / num_fg
191
+ loss_l1 += (self.l1_loss(bbox_preds_org.view(-1, 4)[fg_masks], l1_targets)).sum() / num_fg
192
+
193
+ loss_obj += (self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets*1.0)).sum() / num_fg
194
+ loss_cls += (self.bcewithlog_loss(cls_preds.view(-1, num_classes)[fg_masks], cls_targets)).sum() / num_fg
195
+
196
+ total_losses = self.reg_weight * loss_iou + loss_l1 + loss_obj + loss_cls
197
+ return total_losses, torch.cat((self.reg_weight * loss_iou, loss_l1, loss_obj, loss_cls)).detach()
198
+
199
+ def decode_output(self, output, k, stride, dtype, device):
200
+ grid = self.grids[k].to(device)
201
+ batch_size = output.shape[0]
202
+ hsize, wsize = output.shape[2:4]
203
+ if grid.shape[2:4] != output.shape[2:4]:
204
+ yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)])
205
+ grid = torch.stack((xv, yv), 2).view(1, 1, hsize, wsize, 2).type(dtype).to(device)
206
+ self.grids[k] = grid
207
+
208
+ output = output.reshape(batch_size, self.n_anchors * hsize * wsize, -1)
209
+ output_origin = output.clone()
210
+ grid = grid.view(1, -1, 2)
211
+
212
+ output[..., :2] = (output[..., :2] + grid) * stride
213
+ output[..., 2:4] = torch.exp(output[..., 2:4]) * stride
214
+
215
+ return output, output_origin, grid, hsize, wsize
216
+
217
+ def get_outputs_and_grids(self, outputs, strides, dtype, device):
218
+ xy_shifts = []
219
+ expanded_strides = []
220
+ outputs_new = []
221
+ outputs_origin = []
222
+
223
+ for k, output in enumerate(outputs):
224
+ output, output_origin, grid, feat_h, feat_w = self.decode_output(
225
+ output, k, strides[k], dtype, device)
226
+
227
+ xy_shift = grid
228
+ expanded_stride = torch.full((1, grid.shape[1], 1), strides[k], dtype=grid.dtype, device=grid.device)
229
+
230
+ xy_shifts.append(xy_shift)
231
+ expanded_strides.append(expanded_stride)
232
+ outputs_new.append(output)
233
+ outputs_origin.append(output_origin)
234
+
235
+ xy_shifts = torch.cat(xy_shifts, 1) # [1, n_anchors_all, 2]
236
+ expanded_strides = torch.cat(expanded_strides, 1) # [1, n_anchors_all, 1]
237
+ outputs_origin = torch.cat(outputs_origin, 1)
238
+ outputs = torch.cat(outputs_new, 1)
239
+
240
+ feat_h *= strides[-1]
241
+ feat_w *= strides[-1]
242
+ gt_bboxes_scale = torch.Tensor([[feat_w, feat_h, feat_w, feat_h]]).type_as(outputs)
243
+
244
+ return outputs, outputs_origin, gt_bboxes_scale, xy_shifts, expanded_strides
245
+
246
+ def get_l1_target(self, l1_target, gt, stride, xy_shifts, eps=1e-8):
247
+
248
+ l1_target[:, 0:2] = gt[:, 0:2] / stride - xy_shifts
249
+ l1_target[:, 2:4] = torch.log(gt[:, 2:4] / stride + eps)
250
+ return l1_target
251
+
252
+ @torch.no_grad()
253
+ def get_assignments(
254
+ self,
255
+ batch_idx,
256
+ num_gt,
257
+ total_num_anchors,
258
+ gt_bboxes_per_image,
259
+ gt_classes,
260
+ bboxes_preds_per_image,
261
+ cls_preds_per_image,
262
+ obj_preds_per_image,
263
+ expanded_strides,
264
+ xy_shifts,
265
+ num_classes
266
+ ):
267
+
268
+ fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
269
+ gt_bboxes_per_image,
270
+ expanded_strides,
271
+ xy_shifts,
272
+ total_num_anchors,
273
+ num_gt,
274
+ )
275
+
276
+ bboxes_preds_per_image = bboxes_preds_per_image[fg_mask]
277
+ cls_preds_ = cls_preds_per_image[fg_mask]
278
+ obj_preds_ = obj_preds_per_image[fg_mask]
279
+ num_in_boxes_anchor = bboxes_preds_per_image.shape[0]
280
+
281
+ # cost
282
+ pair_wise_ious = pairwise_bbox_iou(gt_bboxes_per_image, bboxes_preds_per_image, box_format='xywh')
283
+ pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)
284
+
285
+ gt_cls_per_image = (
286
+ F.one_hot(gt_classes.to(torch.int64), num_classes)
287
+ .float()
288
+ .unsqueeze(1)
289
+ .repeat(1, num_in_boxes_anchor, 1)
290
+ )
291
+
292
+ with torch.cuda.amp.autocast(enabled=False):
293
+ cls_preds_ = (
294
+ cls_preds_.float().sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1)
295
+ * obj_preds_.float().sigmoid_().unsqueeze(0).repeat(num_gt, 1, 1)
296
+ )
297
+ pair_wise_cls_loss = F.binary_cross_entropy(
298
+ cls_preds_.sqrt_(), gt_cls_per_image, reduction="none"
299
+ ).sum(-1)
300
+ del cls_preds_, obj_preds_
301
+
302
+ cost = (
303
+ self.cls_weight * pair_wise_cls_loss
304
+ + self.iou_weight * pair_wise_ious_loss
305
+ + 100000.0 * (~is_in_boxes_and_center)
306
+ )
307
+
308
+ (
309
+ num_fg,
310
+ gt_matched_classes,
311
+ pred_ious_this_matching,
312
+ matched_gt_inds,
313
+ ) = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask)
314
+
315
+ del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss
316
+
317
+ return (
318
+ gt_matched_classes,
319
+ fg_mask,
320
+ pred_ious_this_matching,
321
+ matched_gt_inds,
322
+ num_fg,
323
+ )
324
+
325
+ def get_in_boxes_info(
326
+ self,
327
+ gt_bboxes_per_image,
328
+ expanded_strides,
329
+ xy_shifts,
330
+ total_num_anchors,
331
+ num_gt,
332
+ ):
333
+ expanded_strides_per_image = expanded_strides[0]
334
+ xy_shifts_per_image = xy_shifts[0] * expanded_strides_per_image
335
+ xy_centers_per_image = (
336
+ (xy_shifts_per_image + 0.5 * expanded_strides_per_image)
337
+ .unsqueeze(0)
338
+ .repeat(num_gt, 1, 1)
339
+ ) # [n_anchor, 2] -> [n_gt, n_anchor, 2]
340
+
341
+ gt_bboxes_per_image_lt = (
342
+ (gt_bboxes_per_image[:, 0:2] - 0.5 * gt_bboxes_per_image[:, 2:4])
343
+ .unsqueeze(1)
344
+ .repeat(1, total_num_anchors, 1)
345
+ )
346
+ gt_bboxes_per_image_rb = (
347
+ (gt_bboxes_per_image[:, 0:2] + 0.5 * gt_bboxes_per_image[:, 2:4])
348
+ .unsqueeze(1)
349
+ .repeat(1, total_num_anchors, 1)
350
+ ) # [n_gt, 2] -> [n_gt, n_anchor, 2]
351
+
352
+ b_lt = xy_centers_per_image - gt_bboxes_per_image_lt
353
+ b_rb = gt_bboxes_per_image_rb - xy_centers_per_image
354
+ bbox_deltas = torch.cat([b_lt, b_rb], 2)
355
+
356
+ is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
357
+ is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
358
+
359
+ # in fixed center
360
+ gt_bboxes_per_image_lt = (gt_bboxes_per_image[:, 0:2]).unsqueeze(1).repeat(
361
+ 1, total_num_anchors, 1
362
+ ) - self.center_radius * expanded_strides_per_image.unsqueeze(0)
363
+ gt_bboxes_per_image_rb = (gt_bboxes_per_image[:, 0:2]).unsqueeze(1).repeat(
364
+ 1, total_num_anchors, 1
365
+ ) + self.center_radius * expanded_strides_per_image.unsqueeze(0)
366
+
367
+ c_lt = xy_centers_per_image - gt_bboxes_per_image_lt
368
+ c_rb = gt_bboxes_per_image_rb - xy_centers_per_image
369
+ center_deltas = torch.cat([c_lt, c_rb], 2)
370
+ is_in_centers = center_deltas.min(dim=-1).values > 0.0
371
+ is_in_centers_all = is_in_centers.sum(dim=0) > 0
372
+
373
+ # in boxes and in centers
374
+ is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
375
+
376
+ is_in_boxes_and_center = (
377
+ is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
378
+ )
379
+ return is_in_boxes_anchor, is_in_boxes_and_center
380
+
381
+ def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask):
382
+ matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
383
+ ious_in_boxes_matrix = pair_wise_ious
384
+ n_candidate_k = min(10, ious_in_boxes_matrix.size(1))
385
+ topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
386
+ dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
387
+ dynamic_ks = dynamic_ks.tolist()
388
+
389
+ for gt_idx in range(num_gt):
390
+ _, pos_idx = torch.topk(
391
+ cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
392
+ )
393
+ matching_matrix[gt_idx][pos_idx] = 1
394
+ del topk_ious, dynamic_ks, pos_idx
395
+
396
+ anchor_matching_gt = matching_matrix.sum(0)
397
+ if (anchor_matching_gt > 1).sum() > 0:
398
+ _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
399
+ matching_matrix[:, anchor_matching_gt > 1] *= 0
400
+ matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
401
+ fg_mask_inboxes = matching_matrix.sum(0) > 0
402
+ num_fg = fg_mask_inboxes.sum().item()
403
+ fg_mask[fg_mask.clone()] = fg_mask_inboxes
404
+ matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
405
+ gt_matched_classes = gt_classes[matched_gt_inds]
406
+
407
+ pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[
408
+ fg_mask_inboxes
409
+ ]
410
+
411
+ return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds
yolov6/models/reppan.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from yolov6.layers.common import RepBlock, SimConv, Transpose
4
+
5
+
6
+ class RepPANNeck(nn.Module):
7
+ """RepPANNeck Module
8
+ EfficientRep is the default backbone of this model.
9
+ RepPANNeck has the balance of feature fusion ability and hardware efficiency.
10
+ """
11
+
12
+ def __init__(
13
+ self,
14
+ channels_list=None,
15
+ num_repeats=None
16
+ ):
17
+ super().__init__()
18
+
19
+ assert channels_list is not None
20
+ assert num_repeats is not None
21
+
22
+ self.Rep_p4 = RepBlock(
23
+ in_channels=channels_list[3] + channels_list[5],
24
+ out_channels=channels_list[5],
25
+ n=num_repeats[5],
26
+ )
27
+
28
+ self.Rep_p3 = RepBlock(
29
+ in_channels=channels_list[2] + channels_list[6],
30
+ out_channels=channels_list[6],
31
+ n=num_repeats[6]
32
+ )
33
+
34
+ self.Rep_n3 = RepBlock(
35
+ in_channels=channels_list[6] + channels_list[7],
36
+ out_channels=channels_list[8],
37
+ n=num_repeats[7],
38
+ )
39
+
40
+ self.Rep_n4 = RepBlock(
41
+ in_channels=channels_list[5] + channels_list[9],
42
+ out_channels=channels_list[10],
43
+ n=num_repeats[8]
44
+ )
45
+
46
+ self.reduce_layer0 = SimConv(
47
+ in_channels=channels_list[4],
48
+ out_channels=channels_list[5],
49
+ kernel_size=1,
50
+ stride=1
51
+ )
52
+
53
+ self.upsample0 = Transpose(
54
+ in_channels=channels_list[5],
55
+ out_channels=channels_list[5],
56
+ )
57
+
58
+ self.reduce_layer1 = SimConv(
59
+ in_channels=channels_list[5],
60
+ out_channels=channels_list[6],
61
+ kernel_size=1,
62
+ stride=1
63
+ )
64
+
65
+ self.upsample1 = Transpose(
66
+ in_channels=channels_list[6],
67
+ out_channels=channels_list[6]
68
+ )
69
+
70
+ self.downsample2 = SimConv(
71
+ in_channels=channels_list[6],
72
+ out_channels=channels_list[7],
73
+ kernel_size=3,
74
+ stride=2
75
+ )
76
+
77
+ self.downsample1 = SimConv(
78
+ in_channels=channels_list[8],
79
+ out_channels=channels_list[9],
80
+ kernel_size=3,
81
+ stride=2
82
+ )
83
+
84
+ def forward(self, input):
85
+
86
+ (x2, x1, x0) = input
87
+
88
+ fpn_out0 = self.reduce_layer0(x0)
89
+ upsample_feat0 = self.upsample0(fpn_out0)
90
+ f_concat_layer0 = torch.cat([upsample_feat0, x1], 1)
91
+ f_out0 = self.Rep_p4(f_concat_layer0)
92
+
93
+ fpn_out1 = self.reduce_layer1(f_out0)
94
+ upsample_feat1 = self.upsample1(fpn_out1)
95
+ f_concat_layer1 = torch.cat([upsample_feat1, x2], 1)
96
+ pan_out2 = self.Rep_p3(f_concat_layer1)
97
+
98
+ down_feat1 = self.downsample2(pan_out2)
99
+ p_concat_layer1 = torch.cat([down_feat1, fpn_out1], 1)
100
+ pan_out1 = self.Rep_n3(p_concat_layer1)
101
+
102
+ down_feat0 = self.downsample1(pan_out1)
103
+ p_concat_layer2 = torch.cat([down_feat0, fpn_out0], 1)
104
+ pan_out0 = self.Rep_n4(p_concat_layer2)
105
+
106
+ outputs = [pan_out2, pan_out1, pan_out0]
107
+
108
+ return outputs
yolov6/models/yolo.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ import math
4
+ import torch.nn as nn
5
+ from yolov6.layers.common import *
6
+ from yolov6.utils.torch_utils import initialize_weights
7
+ from yolov6.models.efficientrep import EfficientRep
8
+ from yolov6.models.reppan import RepPANNeck
9
+ from yolov6.models.effidehead import Detect, build_effidehead_layer
10
+
11
+
12
+ class Model(nn.Module):
13
+ '''YOLOv6 model with backbone, neck and head.
14
+ The default parts are EfficientRep Backbone, Rep-PAN and
15
+ Efficient Decoupled Head.
16
+ '''
17
+ def __init__(self, config, channels=3, num_classes=None, anchors=None): # model, input channels, number of classes
18
+ super().__init__()
19
+ # Build network
20
+ num_layers = config.model.head.num_layers
21
+ self.backbone, self.neck, self.detect = build_network(config, channels, num_classes, anchors, num_layers)
22
+
23
+ # Init Detect head
24
+ begin_indices = config.model.head.begin_indices
25
+ out_indices_head = config.model.head.out_indices
26
+ self.stride = self.detect.stride
27
+ self.detect.i = begin_indices
28
+ self.detect.f = out_indices_head
29
+ self.detect.initialize_biases()
30
+
31
+ # Init weights
32
+ initialize_weights(self)
33
+
34
+ def forward(self, x):
35
+ x = self.backbone(x)
36
+ x = self.neck(x)
37
+ x = self.detect(x)
38
+ return x
39
+
40
+ def _apply(self, fn):
41
+ self = super()._apply(fn)
42
+ self.detect.stride = fn(self.detect.stride)
43
+ self.detect.grid = list(map(fn, self.detect.grid))
44
+ return self
45
+
46
+
47
+ def make_divisible(x, divisor):
48
+ # Upward revision the value x to make it evenly divisible by the divisor.
49
+ return math.ceil(x / divisor) * divisor
50
+
51
+
52
+ def build_network(config, channels, num_classes, anchors, num_layers):
53
+ depth_mul = config.model.depth_multiple
54
+ width_mul = config.model.width_multiple
55
+ num_repeat_backbone = config.model.backbone.num_repeats
56
+ channels_list_backbone = config.model.backbone.out_channels
57
+ num_repeat_neck = config.model.neck.num_repeats
58
+ channels_list_neck = config.model.neck.out_channels
59
+ num_anchors = config.model.head.anchors
60
+ num_repeat = [(max(round(i * depth_mul), 1) if i > 1 else i) for i in (num_repeat_backbone + num_repeat_neck)]
61
+ channels_list = [make_divisible(i * width_mul, 8) for i in (channels_list_backbone + channels_list_neck)]
62
+
63
+ backbone = EfficientRep(
64
+ in_channels=channels,
65
+ channels_list=channels_list,
66
+ num_repeats=num_repeat
67
+ )
68
+
69
+ neck = RepPANNeck(
70
+ channels_list=channels_list,
71
+ num_repeats=num_repeat
72
+ )
73
+
74
+ head_layers = build_effidehead_layer(channels_list, num_anchors, num_classes)
75
+
76
+ head = Detect(num_classes, anchors, num_layers, head_layers=head_layers)
77
+
78
+ return backbone, neck, head
79
+
80
+
81
+ def build_model(cfg, num_classes, device):
82
+ model = Model(cfg, channels=3, num_classes=num_classes, anchors=cfg.model.head.anchors).to(device)
83
+ return model
yolov6/solver/build.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ import os
4
+ import math
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+
9
+ def build_optimizer(cfg, model):
10
+ """ Build optimizer from cfg file."""
11
+ g_bnw, g_w, g_b = [], [], []
12
+ for v in model.modules():
13
+ if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
14
+ g_b.append(v.bias)
15
+ if isinstance(v, nn.BatchNorm2d):
16
+ g_bnw.append(v.weight)
17
+ elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
18
+ g_w.append(v.weight)
19
+
20
+ assert cfg.solver.optim == 'SGD' or 'Adam', 'ERROR: unknown optimizer, use SGD defaulted'
21
+ if cfg.solver.optim == 'SGD':
22
+ optimizer = torch.optim.SGD(g_bnw, lr=cfg.solver.lr0, momentum=cfg.solver.momentum, nesterov=True)
23
+ elif cfg.solver.optim == 'Adam':
24
+ optimizer = torch.optim.Adam(g_bnw, lr=cfg.solver.lr0, betas=(cfg.solver.momentum, 0.999))
25
+
26
+ optimizer.add_param_group({'params': g_w, 'weight_decay': cfg.solver.weight_decay})
27
+ optimizer.add_param_group({'params': g_b})
28
+
29
+ del g_bnw, g_w, g_b
30
+ return optimizer
31
+
32
+
33
+ def build_lr_scheduler(cfg, optimizer, epochs):
34
+ """Build learning rate scheduler from cfg file."""
35
+ if cfg.solver.lr_scheduler == 'Cosine':
36
+ lf = lambda x: ((1 - math.cos(x * math.pi / epochs)) / 2) * (cfg.solver.lrf - 1) + 1
37
+ else:
38
+ LOGGER.error('unknown lr scheduler, use Cosine defaulted')
39
+
40
+ scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
41
+ return scheduler, lf