# YOLOv6t model model = dict( type='YOLOv6t', pretrained='./weights/yolov6t.pt', depth_multiple=0.25, width_multiple=0.50, backbone=dict( type='EfficientRep', num_repeats=[1, 6, 12, 18, 6], out_channels=[64, 128, 256, 512, 1024], ), neck=dict( type='RepPAN', num_repeats=[12, 12, 12, 12], out_channels=[256, 128, 128, 256, 256, 512], ), head=dict( type='EffiDeHead', in_channels=[128, 256, 512], num_layers=3, begin_indices=24, anchors=1, out_indices=[17, 20, 23], strides=[8, 16, 32], iou_type='ciou' ) ) solver = dict( optim='SGD', lr_scheduler='Cosine', lr0=0.0032, lrf=0.12, momentum=0.843, weight_decay=0.00036, warmup_epochs=2.0, warmup_momentum=0.5, warmup_bias_lr=0.05 ) data_aug = dict( hsv_h=0.0138, hsv_s=0.664, hsv_v=0.464, degrees=0.373, translate=0.245, scale=0.898, shear=0.602, flipud=0.00856, fliplr=0.5, mosaic=1.0, mixup=0.243, )