Spaces:
Sleeping
Sleeping
import os | |
import similarity_search | |
import gradio as gr | |
# Path to the directory containing similar images | |
# similar_images_dir = ".\gallery" | |
# def read_image(image_file): | |
# img = cv2.imread( | |
# image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION | |
# ) | |
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
# if img is None: | |
# raise ValueError('Failed to read {}'.format(image_file)) | |
# return img | |
def get_similar_images(image): | |
similar_image_ids = similarity_search.find(image) | |
return similar_image_ids | |
# def get_image_paths(prod_ids): | |
# csv_path = './gallery.csv' # Replace with the actual path | |
# data = pd.read_csv(csv_path) | |
# image_paths = [] | |
# for i, prod_id in enumerate(prod_ids): | |
# row = data[data['seller_img_id'] == prod_id] | |
# if not row.empty: | |
# image_path = './' + row.iloc[0]['img_path'] | |
# print(image_path) | |
# image_paths.append(image_path) | |
# return image_paths | |
def predict(image): | |
similar_image_ids = get_similar_images(image) | |
return similar_image_ids | |
# Create title, description and article strings | |
title = "Visual Product Recognition" | |
description = "A model to find the similar images in the e-commerce platform" | |
article = "Created by Thenujan Nagaratnam for Data Science Project at UoM" | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs=gr.Image(type="pil"), # what are the inputs? | |
outputs=gr.Label(type="text"), | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch() |