Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -29,6 +29,7 @@ from PIL import Image
|
|
29 |
import torch
|
30 |
import requests
|
31 |
import tensorflow as tf
|
|
|
32 |
|
33 |
|
34 |
def _normalized_to_pixel_coordinates(
|
@@ -50,7 +51,6 @@ def _normalized_to_pixel_coordinates(
|
|
50 |
return x_px, y_px
|
51 |
|
52 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
53 |
-
|
54 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
55 |
"stabilityai/stable-diffusion-2-inpainting",
|
56 |
torch_dtype=torch.float16,
|
@@ -68,34 +68,8 @@ base_options = python.BaseOptions(model_asset_path='model.tflite')
|
|
68 |
options = vision.ImageSegmenterOptions(base_options=base_options,
|
69 |
output_category_mask=True)
|
70 |
|
71 |
-
def get_bounding_box(mask):
|
72 |
-
"""Generate bounding box coordinates from a binary mask."""
|
73 |
-
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
74 |
-
if contours:
|
75 |
-
x, y, w, h = cv2.boundingRect(contours[0])
|
76 |
-
return x, y, x + w, y + h
|
77 |
-
return 0, 0, mask.shape[1], mask.shape[0]
|
78 |
-
|
79 |
-
|
80 |
-
def example_segmentation_function(image_file_path, x, y):
|
81 |
-
OVERLAY_COLOR = (255, 105, 180) # Rose
|
82 |
-
base_options = python.BaseOptions(model_asset_path='model.tflite')
|
83 |
-
options = vision.ImageSegmenterOptions(base_options=base_options, output_category_mask=True)
|
84 |
-
|
85 |
-
with python.vision.InteractiveSegmenter.create_from_options(options) as segmenter:
|
86 |
-
image = mp.Image.create_from_file(image_file_path)
|
87 |
-
roi = vision.InteractiveSegmenterRegionOfInterest(
|
88 |
-
format=vision.InteractiveSegmenterRegionOfInterest.Format.KEYPOINT,
|
89 |
-
keypoint=containers.keypoint.NormalizedKeypoint(x, y)
|
90 |
-
)
|
91 |
-
segmentation_result = segmenter.segment(image, roi)
|
92 |
-
category_mask = segmentation_result.category_mask
|
93 |
-
segmentation_mask = category_mask.numpy_view().astype(np.uint8)
|
94 |
-
|
95 |
-
return segmentation_mask, image
|
96 |
-
|
97 |
-
|
98 |
|
|
|
99 |
def segment(image_file_name, x, y, prompt):
|
100 |
OVERLAY_COLOR = (255, 105, 180) # Rose
|
101 |
|
@@ -175,6 +149,7 @@ def segment(image_file_name, x, y, prompt):
|
|
175 |
return output_image, bbox_image
|
176 |
|
177 |
|
|
|
178 |
def generate(image_file_path, x, y, prompt):
|
179 |
output_image, bbox_image = segment(image_file_path, x, y, prompt)
|
180 |
|
|
|
29 |
import torch
|
30 |
import requests
|
31 |
import tensorflow as tf
|
32 |
+
import spaces
|
33 |
|
34 |
|
35 |
def _normalized_to_pixel_coordinates(
|
|
|
51 |
return x_px, y_px
|
52 |
|
53 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
54 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
55 |
"stabilityai/stable-diffusion-2-inpainting",
|
56 |
torch_dtype=torch.float16,
|
|
|
68 |
options = vision.ImageSegmenterOptions(base_options=base_options,
|
69 |
output_category_mask=True)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
@spaces.GPU
|
73 |
def segment(image_file_name, x, y, prompt):
|
74 |
OVERLAY_COLOR = (255, 105, 180) # Rose
|
75 |
|
|
|
149 |
return output_image, bbox_image
|
150 |
|
151 |
|
152 |
+
@spaces.GPU
|
153 |
def generate(image_file_path, x, y, prompt):
|
154 |
output_image, bbox_image = segment(image_file_path, x, y, prompt)
|
155 |
|